Impact of pf and muf adhesives modified with TiO2 and SiO2 on the adhesion strength

The purpose of this study was to evaluate adhesion strength of phenol formaldehyde (PF) and melamine urea formaldehyde (MUF) adhesives modified with nano-technological products on the adhesion strength of different wood species. For this purpose, the effect of nano-TiO2 and nano-SiO2 on bonding performance and structural properties of PF and MUF were researced. And also, TiO2 and SiO2 chemicals were chosen as a rate of 2%, 4%, 6%, 8% within the adhesives. The bonding strength tests of the acquired Uludag fir and aspen boards were measured with a Universal Zwick Roell brand testing device in accordance with TS EN 205 standards. The obtained results showed that the highest bonding strength for Uludag fir wood was 8.27 N. mm-2 with PF adhesive mixed as 8% of SiO2 and the lowest was 5.91 N. mm-2 with MUF adhesive mixed as 2% TiO2, respectively. For aspen wood, the highest value was determined as 7.32 N. mm-2 with PF adhesive into which 8% of TiO2 had been added and the lowest was as 5.55 N. mm-2 with MUF adhesive into which % 6 TiO2 had been added. In conclusion it was determined that compared to the control samples the bonding strength of wood materials manufactured with the addition of nanoproduct into the PF adhesive enhanced the bonding strength by approximately 30% and 40% within MUF adhesive.

Synthesis and characterization of resol type phenol-formaldehyde resin improved by SiO2-Np

In this work, resol type phenol–formaldehyde (RPF) resin was modified with silicon dioxide nanoparticles (SiO2-Np). SiO2-Np was added at varying ratios from 1 to 4 wt.% to improve the bonding performance of the RPF resins. The physical characteristics of the nano-modified RPF (nano-RPF) resins were examined. The effects of modification were studied by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The results of FT-IR revealed that the nano-RPF resins were successfully produced by phenol, formaldehyde, and SiO2-Np. The nano-RPF resins demonstrated high thermal stability at temperatures above 500°C. The adhesive performance of the nano-RPF resins was investigated under dry and wet conditions. The nano-RPF resins indicated better adhesive performance than unmodified RPF resin. The RPF resin could be improved by SiO2-Np.