Effects of fire retardants on mechanical properties and water resistance of Pinus massoniana particleboard

Pinus massoniana Lamb. wood particleboards processed by inorganic and organic fire retardants of two densities were prepared by isocyanate and MUF resin. Variations of internal bonding strength (IB), modulus of rupture (MOR), modulus of elasticity (MOE) and thickness swelling rate (TS) of particleboard were observed. Results demonstrated decreasing of IB from 0.81 MPa to 0.42 MPa and 0.36 MPa, MOR from 17.3 MPa to 12.5 MPa and 12.3 MPa, MOE from 1840 MPa to 1328 MPa and 1117 MPa, and increasing of TS from 5.2% to 15.1% and 11.2%, respectively, for the treated MUF particleboards of density 0.65 g.cm-3. Similarly, decreasing of IB from 0.93 MPa to 0.66 MPa and 0.64 MPa, MOR from 16.2 MPa to 10.6 MPa and 12.1 MPa, MOE from 1246 MPa to 1573 MPa and 1466 MPa, and increasing of TS from 6.7% to 7.1% and 6.0%, respectively, when isocyanate adhesive was used. The similar changes were showed when the density of particleboard was 0.75 g.cm-3. Improving density of particleboard appropriately and decrease density difference between the surface to chip layers could make the profile density curve tend to be stable, which could get a relatively high mechanical strength and water resistance. Synergistic effects between isocyanate and fire retardants was confirmed. The particleboard prepared with isocyanate was obviously superior to that prepared with MUF resin in all performances.

Effects of heat-treatment on bonding performance of Betula alnoides

Heat-treatment woods of Betula alnoides were prepared by using vapor as the heat-conducting medium. Effects of heat-treatment time and heat-treatment temperature on equilibrium moisture content, density, pH value, contact angle and bonding performance of Betula alnoides were discussed in this paper. The results indicated that: (1) With the increase of heat-treatment temperature, the equilibrium moisture content, density and pH value of Betula alnoides decreased gradually. (2) With the increase of heat-treatment temperature, the contact angle of Betula alnoides increased from 70.08° to about 100°, resulting in the reduction of bonding strength gradually. Bonding strength of Betula alnoides after heat-treatment was related with the used adhesive. Bonding strength of different adhesives decreased to different extents. The bonding strength of Betula alnoides wood with polyvinyl acetate (PVAC) resin was generally higher than that of melamine-urea-formaldehyde (MUF) resin. The former were 6.35-4.56 MPa, and the latter were 5.60-3.00 MPa. (3) Heat-treatment time influenced equilibrium moisture content, density, contact angle, pH value and bonding strength of Betula alnoides less than heat-treatment temperature. (4) Heat-treatment could affect strength and surface performance of Betula alnoides greatly and the processing medium should be extended.