The study on glue-applying methods and hot-pressing technology of parallel strand lumber

Parallel strand lumber (PSL) was manufactured from the veneer strand cut from the poplar broken veneers of the plywood enterprises, by analyzing the influence of the size of veneer strands, the glue concentration and glue-applying time on the glue-absorbing amount of veneer strands, the influence of three different glue-applying was, hot-pressing time and temperature on the physical and mechanical properties of PSL was reviewed and the hot-pressing technology was optimized. The experiment results showed that the size of the veneer strands have not notable influence on the gluing-absorbing amount, and mainly affect the homogeneity and appearance quality of the product. The glue concentration is one main factor to affect the glue-absorbing amount of veneer strands and PF resin of 30% concentration was chosen. The glue-applying way is the main factor to affect the mechanical property of PSL. The hot-pressing time and temperature have significant influence on physical and mechanical properties of PSL. Comprehensively considering, the physical and mechanical properties and homogeneity of products are better using the veneer strands with 100 mm length, the glue-spraying way and hot-pressing technology with the time 35 min and the temperature of 150°C.

Steam-pressing mechanism of low density magnesia-bonded wood-wool panel

In this paper, wood-wool panel was prepared by steam pressing as opposed to the traditional cold-pressing and hot-pressing methods in order to eliminate the shortcomings of both methods. Cold pressed wood panels have low strength. The overall performance of heat pressed wood panel was poor. The water absorption of these two panels was too large. The steam pressing mechanism was studied by the means of X-ray diffraction and scanning electron microscope. The surface structure, moisture absorption and mechanical properties of wood-wool panel were investigated by experimental testing and numerical analysis. The surface structure of the wood-wool panel became stable, the moisture absorption was reduced, and the mechanical properties of the wood-wool panel were enhanced. The static bending strength of autoclaved wood-wool panel was 4% higher than that of cold-pressed wood-wool panel, and 7.4% higher than that of hot-pressed wood-wool panel. And the sound absorption coefficient increased by 6.3% and 5% respectively. The thermal conductivity was 2.4% lower than that of cold-pressed wood-wool panel.

Study on flame retardant leach resistant of modified poplar wood

After flame retardant and enhancing treatment, fast-grown poplar face the problem of leaching of pharmacy, which affected the effective permanence of the retard and further use is limited. In this paper, we study the fixed effect of low molecule phenol-formaldehyde (PF) resin on nitrogen and phosphorus (N-P) inorganic flame retardant composite under the condition of high relative humidity. The change of lateral sizes and quality of the specimens were emphasized in the experiment. Results reveal that the greater the concentration of flame retardant was, the greater weight gain percentage of the samples was, and the more serious leach was in the test, after the specimen was modified with the flame retardant. When weight gain percentage of the specimens is same, the greater the concentration of PF resin test solution was, better effect of the leach resistant will be obtained with the concentration of PF test solution increased. The PF resin with 25% concentration had the best effect to reduce the leach of N-P inorganic composite retards. From the comparative analysis above, it was advisable to indicate the PF resin with 25% concentration had the best effect to reduce the leach of N-P inorganic composite retards.