Moisture at contacts of timber-concrete element

The subject of the article is to monitor the changes of moisture on the contact surface concrete and timber part of the composite timber-concrete beam. The moisture directly affects the properties of timber and causes its volume changes and degradation processes. These effects reduce of durability and load capacity of the structures. The beam was placed at the exterior. The observed contacts of the beam are often critical on real structures, as it is difficult to repair and maintenance in the case of increasing moisture or intrusion of dirt. The experiment was used to monitor and evaluate the dependence of changing moisture in contacts depending on ambient environmental conditions.

Prestress losses in spruce timber

Prestressing force and its change is one of the key factors that affect wooden constructions, especially those using methods of transverse prestressing. To achieve a description of a prestress force (P) in transversally prestressed wooden constructions a simulated experiment was done. Prestressing force, external temperature, and moisture were measured during 669 days. The main goal of this article was to model the primary losses of the prestress force at the spruce element of the 138 x 138 mm cross-section with the sensor installed. For this purpose, all measurements were statistically analyzed and the period of primary loss was found. During this period the prestress force was decreasing with time mainly and the influence of temperature and moisture could be omitted. Based on this analysis a mathematical model of losses of the prestress force was found as P = 8.538-0.014.day.