Comparative proteomic analysis of the thick-walled ray Formation process of haloxylon ammodendron in the gurbantunggut desert, China

Thick-walled ray cells of Haloxylon ammodendron were first reported by Zhou and Gong in 2017, but their formation mechanism remains unknown. In this study, we performed a proteomic analysis of ray cell wall formation in the xylem. H. ammodendron in Shihezi exhibits a thicker ray cell wall than that in Jinghe. During the process of cell wall biosynthesis in the xylem of H. ammodendron, the nonspecific lipid-transfer protein and beta expansin EXPB2.1 (Mirabilis jalapa) first loosen the cell wall, and this step is followed by extension and expansion. Subsequently, xyloglucan endotransglycosylase/hydrolase 1 cleaves and links the xyloglucan chains. Photosystem I P700 apoprotein A1, reversibly glycosylated polypeptide 1 and GDP-mannose-3′,5′-epimerase are involved in the cellulose, hemicellulose and pectin biosynthesis processes in the cell wall by providing components or energy. Finally, the proteins involved in phenylpropanoid biosynthesis promote lignification of the ray cell wall and complete the biosynthetic process of the cell wall.

Study on the permeation and fixation of ACQ-C in poplar

In this paper, the effects of atmospheric pressure, vacuum and vacuum pressure impregnation on the permeability of alkaline copper quat in poplar were studied, and the permeability and fixation of preservatives were improved by pretreatment of poplar. The results show that the volume loading of wood can be increased by about 60 – 150% after 30 min of vacuum treatment, so the vacuum method is a simple and efficient preservation treatment method. In addition, ethanol treatment, heat treatment and microwave treatment can increase the fixation rate of copper ions by 5 – 10%, but the fixation rate of copper ions dropped by 17.83% after NaOH treatment for the dissolution of partial hemicellulose.