Study on factors affecting the sound absorption property of magnesia- bonded wood-wool panel

Magnesia-bonded Wood-Wool Panel is a kind of environmentally friendly inorganic material with wood-wool as matrix materials, and magnesium oxychloride cement (MOC) as binder which is also a kind of porous material with nice sound absorption property. In this study, through single factor experiments, it was found that The thickness of the panel, molar ratio of MgO/MgCl2/H2O, wood-wool length influenced material sound absorption performance of the panel significantly. The thickness of the panel was the most significant factor affecting the panell’s sound absoption property, while the effects of density of the panel and weight ratio of magnesia to wood were not significant. The optimal factors were obtained through orthogonal experiments: Thickness of the panel 25 mm, molar ratio of MgO to MgCl2 to H2O 5: 1: 10, density of the panel 0.65 g.cm-3, weight ratio of magnesia to wood 1.25, wood-wool length 200 mm.

Influence of wet and dry cycle on properties of magnesia-bonded wood-wool panel

In this paper, magnesia-bonded wood-wool panel was subjected to different times of wet and dry cycle to analyze their effects on the physical properties and the sound absorption property of the panel from macro and micro perspective. The results showed that with the increase of the wet and dry circle times, both MOE and thickness swelling decreased and the average absorption coefficient of the specimen increased.