Study on Acoustic Black Hole Effect of Acoustic Emission Signals in Pinus sylvestris var. mongolica litv

The difference in density and wave velocity causes distinct wave impedance between air and wood, resulting in complex acoustic emission (AE) signals due to reflection on the wood’s surface. This study explores the suppression of AE signal reflection by modifying the structure of thin wood panels, utilizing the theory of acoustic black holes (ABH). Initially, a one-dimensional ABH structure was created by forming a wedge structure on one side of the specimen. Pencil-lead break (PLB) tests simulated sudden AE sources on the specimen’s surface. AE signals were collected using three equidistant sensors on the upper surface, with a sampling frequency of 2 MHz. The AE signal was then segmented into frequency bands using the differential method and analyzed in both time and frequency domains. Comparisons were made to understand the impact of the one-dimensional ABH on AE signal propagation. Results demonstrated that the one-dimensional ABH effectively suppressed AE signal reflection on the wood’s surface, reducing the high-frequency components by 18.31%, 20.83%, and 12.09% for each sensor, respectively. Furthermore, the experimental cut-off frequency of 0.98 kHz surpassed the theoretically calculated value of 0.39 kHz due to the disparity between the ABH structure’s thickness and the theoretical prediction.

Study on the dispersion characteristics of wood acoustic emission signal based on wavelet decomposition

Artificial AE sources were generated on the surfaces of Ulmus pumila, Zelkova schneideriana, Cunninghamia lanceolata, and Pinus sylvestris var. mongolica Litv. specimens. The AE transverse wave signal was decomposed into 3-layers detail signals by wavelet decomposition and reconstructed, and it was calculated based on correlation analysis. Then the longitudinal wave speed was calculated according to the time-difference-of-arrival (TDOA) method, and the wood dispersion phenomenon was studied. The results showed that the dispersion phenomenon of Ulmus pumila was obvious. The propagation speed of high-frequency signal was 2.38 times that of low-frequency signal. The ratio of high and low frequency propagation speed of soft wood was 1.72 and 1.73. The dispersion degree of Zelkova schneideriana was the weakest, and the propagation speed of the high frequency was 1.25 times of the low one. The ratios of longitudinal and transverse wave speeds of the four specimens were 4.59, 4.07, 4.24 and 4.2, respectively.

Study on propagation law of acoustic emission signals on anisotropic wood surface

In order to explore the influence of wood’s anisotropic characteristics on Acoustic Emission (AE) signals’ propagation, the law of AE signals’ propagation velocity along different directions was studied. First, The center of the specimen’s surface was took as the AE source, then 24 directions were chose one by one every 15º around the center, and 2 AE sensors were arranged in each direction to collect the original AE signals. Second, the wavelet analysis was used to denoise the original AE signals, then the AE signals were reconstructed by Empirical Mode Decomposition (EMD). Finally, time difference location method was utilized to calculate AE signals’ propagation velocity. The results demonstrate that AE signals’ propagation velocity has obvious feature of quadratic function. In the range of 90º, as the angle of propagation direction increases, the propagation velocity of the AE signals presents a downward trend.

Study on lamb wave propagation characteristics along the grain of thin wood sheet

Through the time-frequency analysis of the propagation waveform of the acoustic emission (AE) signal propagating in the thin sheet of Pinus sylvestris var. mongolica, the propagation characteristics of the stress wave when propagating as a lamb wave was studied. An AE source was generated on the surface of the specimen, the discrete wavelet transform method was used to achieve AE signal de-noising and reconstruct the waveform of the AE signal. On this basis, the time difference positioning method was used to calculate the propagation velocity of lamb waves, and compared with the propagation characteristics of lamb waves in the metal specimen. The results show that the high-frequency mode of lamb waves attenuated sharply as they propagate in the thin wood sheet, indicating that the microstructure of wood has a significant low-pass characteristic for lamb waves. The average attenuation rates of lamb waves in metal and thin wood sheet were 87.1% and 75.7%, and the velocity was 4447.0 m.s-1 and 1186.3 m.s-1, respectively. This shows that AE signals can travel longer distances in the thin wood sheet, but the propagation velocity is significantly reduced.