Deformation behavior of circular saw blades with different body structures after roll tensioning

A roll tensioning process for circular saw blades with four typical body structures was built with the finite element method. After roll tensioning, the elastoplastic deformation behaviors of the four blades were simulated and tested and the effects of roll reduction displacement on flatness were analyzed. The abilities of the blades to withstand cutting temperature load after the roll tensioning process were compared. The theoretical results showed that each of the four circular saw blades with unique body structures had different process parameters in an appropriate tensioning state. Circular saw blades with different body structures showed variation in improvements of their ability to withstand cutting temperature load after an appropriate tensioning process.

The influence of chosen factors of a circular saw blade on the noise level in the process of cross cutting wood

Research was focused on evaluation of a circular saw blade tooth spacing on maximum equivalent noise level LAeq in the process of cross cutting wood. There were used circular saw blades with uniform tooth spacing and a full body and non-uniform tooth spacing with dilatation gaps. The measurements were done on the measuring device which was designed at the Department of Environmental and Forest Technology where it has been modernised. For research, testing samples of three wood species i.e. spruce (Picea abies), pine (Pinus sylvestris) and beech (Fagus sylvatica) were used. In the cutting process, two feeding speeds were set up with the same revolutions of circular saw blades and for more precise statistical significance; every measurement was repeated several times. At the research, there was found out that the circular saw blade with uniform tooth spacing has lower equivalent noise level at smaller feeding speed and cutting soft wood species. The circular saw blade with non-uniform tooth spacing has lower equivalent noise level at higher feeding speed.

The effect of the circular saw blade body structure on the concentric distribution of the temperature along the radius during the wood cutting process

The paper presents the experimental results of a research aimed at the distribution of the temperature on thecircular saw blade body. The temperature was measured at four distances from the centre of the circular saw blade body (60 mm, 70 mm, 80 mm, 90 mm) by means of an infrared thermometer. Three circular saw blades with the diameter of 350 mm and a variable adjustment of the body (without slots and coating, with slots and without the coating, with both slots and coating) were used for the longitudinal sawing of the spruce wood (Picea excelsa) with the thickness of h = 25 mm. Feed speed vf = 12 m•min-1 and cutting revolutions n = 4000 min-1 were constant. The measured temperature was in the range from 22°C to 30°C. The highest measured temperatures were recorded on the circular saw blade with the slots and coating.

Laser shock process as new tensioning method for circular saw blade

Laser shock process for circular saw blade was proposed and analyzed in this paper. The high pressure plasma shock wave generated by strong laser beam was applied to many local areas of circular saw blade to generate local plastic deformation. Resistance strain rosette and static strain acquisition instrument were used for measuring the stress field of laser shocked circular saw blade. The natural frequency of circular saw blade after laser shock process was tested by hammer vibration test method. Based on reasonable simplification and hypothesis, laser shock process for circular saw blade was built by finite element method. The stress field obtained by experiment and theoretical calculation shows that investigated process is feasible. The natural frequencies of laser shocked circular saw blade for nodal diameters Nd = 2 and Nd = 3 are increased which means that the dynamic stability of circular saw blade is enhanced after modification.