Analysis of tracheid morphological characteristics, annual rings width and latewood rate of Cupressus funebris in relation to climate factors

Based on the principle of tree chronology, this paper measures tracheid morphological characteristics, ring width, and latewood rate of harvested wood from Cupressus funebris plantation in Deyang, Sichuan Province. Using meteorological data of average temperature, precipitation, relative humidity, sunshine percentage, and average ground temperature from 1983 to 2015, correlation analyses were conducted. The results of the analysis showed that the correlation between tracheid morphological characteristics, ring width, and latewood rate was not consistent with a single climatic factor. Moreover, the correlation between tracheid morphological characteristics and climatic factors, and the correlation between ring width, latewood rate, and climatic factors were significantly different. Temperature was the main limiting factor for ring width and latewood rate. In addition, relative humidity was positively correlated with ring width and negatively correlated with most indicators of tracheid morphological characteristics. Fewer indicators were affected by sunshine percentage. Meanwhile, precipitation was not significantly correlated with ring width and latewood rate. In conclusion, the correlation between various indicators and climate factors was from high to low in order of temperature, relative humidity, sunshine percentage, and precipitation.

Fiber morphology and physical properties of branch and stem wood of hawthorn (crataegus azarolus l.) grown in zagros forests

This study aims at investigating the effect of three altitude levels (below 1800 m, 1800-2000 m and above 2000 m) on the physical and biometric properties of stem-wood and branch-wood of hawthorn species. Moreover, the relationship between wood dry density and volumetric swelling, fiber length, fiber diameter, cell wall thickness were studied. Results indicated that altitude had significant effects on the dry density, volumetric swelling and fiber length of stem wood while did not significant effects on the density of branch wood. Additionally, some physical and biometric properties had relatively greater correlation coefficients in branch wood than in stem wood whereas others had higher coefficients in stem wood compared to branch wood. Deep understanding of properties this wood species will provide a fresh insight into the relationship between wood properties and environmental factors.

Study of the correlation between fiber and mechanical properties of wood Borassus aethiopum Mart. of chad

Palmyra palm (Borassus aethiopum Mart.) is a large palm tree whose wood is often used for its mechanical resistance and weathering in buildings in Africa. In this work, the influence of fibre characteristics on the mechanical properties of wood was studied. For this purpose, the mechanical characteristics were determined and study of the micrograph of the sapwood and Duramen which are the useful parts of this wood were carried out. The results of this study show the mechanical properties of the palmyra are very influenced by the number and the mechanical characteristics of the fibres. The proposed polynomial model of the evolution of the mechanical characteristics gives the good results because the maximum relative mistakes of the prevision are 4.43% for the breaking strength and 0.40% for the Young’s modulus.