Effect of natural and accelerated aging on the properties of wood-plastic composites

The correspondence of natural and laboratory-accelerated aging of WPC has long been a highly important problem discussed by many scholars. In this work, the changes in moisture content (MC), modulus of rupture (MOR), modulus of elasticity (MOE), screw holding force and creep recovery rates of two groups of wood-plastic composites (WPC) after natural and accelerated aging (high-low temperature cycles and freeze-thaw cycles) were studied to provide guidance for the use of WPC in outdoor applications. The results showed that, after the natural aging and freeze-thaw cycles treatments, MC increased significantly with both 167% of the untreated value of wood-HDPE composites with 30% wood fiber content and a thickness of 25 mm (W25), while 67% and 133% of the wood-HDPE composites with 30% wood fiber content and a thickness of 20 mm (W20), but is almost unchanged after the treatment with high-low temperature cycles. The mechanical strength, including MOR, MOE, screw holding force and creep recovery rate, decreased after natural and accelerated aging. The greatest decreases of MOR, MOE, screw holding force and creep recovery rate were 14%, 13%, 21%, and 7% for W25, while 5%, 8%, 8%, and 14% for W20 respectively. Environmental aging can reduce the strength of WPC, but the bending strength retention rate is more than 85%, showing that performance of WPC is relatively stable compared to wood materials, which is one of the reasons for the widely use of WPC in outdoor applications.

Enduring performance of self-tapping screw connection in wood members and WPC members

This study examined the creep performance of self-tapping screw connection in wood members and wood-plastic composite (WPC) members that had been subjected to changes in moisture and stress levels. It was found that the self-tapping screw’s joint strength depended on interlocking and friction force between wood and screw threads, between WPC and screw threads. The pine (Pinus spp.) and the WPC had almost the same creep properties. In wet condition, the pine’s creep was higher than the WPC’s. Burgers mode was able to precisely simulate the short-term creep performance of screw connection in the pine members and in the WPC members. In the wet condition, the creep was apparently higher than that in dry condition. Temperature and relative humidity were two important factors that influenced creep. The higher stress level was, the larger amount of creep would be. Creep rate was the largest in both wet condition and high stress level. It is recommended that the maximum tensile stress level should be limited to 40 % for screw connection in the wood members and the WPC members.