THIN LIGNOCELLULOSIC LINERS BASED OF SPRUCE SHAVINGS

The article is devoted to determining the basic physical and mechanical properties of sheet materials up to 1.5 mm thick based on wood shavings and PVAc glue with a high proportion of water, pressed under high pressure up to 25 MPa and a temperature of around 190°C, so that the softening of lignin caused by the generated steam, allow to create a compact and non-crumbling surface. In order to characterize the physical-mechanical properties of the new wood-based sheet material with minimum thickness and characteristic elasticity, tests according to the CEPI (Confederation of European Paper Industries) standards were adopted. Procedures for tensile strength according to ISO 1924-2 (2008), Burst strength according to ISO 2758 (2014), puncture according to ASTM D781-68 (1973), water absorption according to ISO 5637 (1989) and porosity according to TAPPI Test method T460 were applied

MODIFIED STARCHES AS A MEAN OF INCREASING THE DRY STRENGTH OF TISSUE PAPERS

Application of agents to increase the dry strength is one of the ways of improving the physical-mechanical properties of papers. In the presented article, we are dealing with the application of modified starches to the pulp mass in order to increase the strength parameters of hygienic papers. In laboratory experiments, 8 types of agents were tested, which differed in charge level, molecular weight and cross-linker level. Strength parameters, porosity and water absorption were evaluated during the laboratory tests. The most important strength parameter in the production of tissue papers is the tensile strength, the most suitable parameters for the production of tissue papers were achieved when applying the product ECO 2777. By monitoring the influence of the dose of starch, it was found that the optimal dose is 3 kg per ton of absolutely dry pulp, when there is an increase in the tensile strength by 18%, the burst strength by 41% and while maintaining the required values of stiffness, porosity and water absorption

Methods of preparation of nanofibrillated cellulose for special filter papers with effective air filtration. Short notes

Nanofibrillated cellulose was prepared from distillery refuse based on maize starch using the extraction with NaOH and HCl involving centrifugation. SEM images of bleached kraft pulp with/without the addition of nanofibrillated cellulose were compared. The results showed that the application of nanofibrillated cellulose caused a visible reduction in the surface porosity. Conversely, mixing of the pulp with the nanofibrillated cellulose resulted in large pores among the fibres. The effect of the cationic retention aid on porosity was not significant, observed in the fines retention. A minimal difference in porosity was found among of fine and coarse fibres. When lyophilisation as drying method was used it yielded nanofibrillated cellulose with a size in the range of approximately 100 to 150 nm.

Effect of different pre-treatments on the permeability of glue-laminated bamboo

In this study, hydrothermal treatments (duration: 2 h, 5 h, 8 h; temperature: 60°C, 80°C, 100°C), ultrasonic treatments (duration: 60 min, 90 min, 120 min; temperature: 40°C, 50°C, 60°C; ultrasonic power: 400 W, 600 W, 800 W) and freeze-drying treatments (vacuum degree: 0.05 mbar, 0.1 mbar, 0.5 mbar, 1.0 mbar, 1.7 mbar) were performed respectively to improve the permeability of glue-laminated bamboo. The effects of different pre-treatments on the permeability were compared according to the water absorption test and the mercury intrusion porosimetry test. The microstructure change of the samples was observed by scanning electron microscope (SEM). The results showed that freeze-drying treatment was an effective way to increase the permeability of the samples, in which the water absorption rate can be increased by 47%, and the porosity can be increased by 10% at 0.5 mbar vacuum. From SEM analysis, some small holes appeared in the cell wall of the freeze-dried samples, because he free water inside the samples was changed into ice, and the volume became larger, and the pore diameter of the bamboo was enlarged.

Relationship between structural parameters and water absorption of bleached softwood and hardwood kraft pulps

The influence of porosity, relative bonded area and air permeability on water absorption of unbeaten and beaten bleached kraft pulps from different wood species used for tissue paper production was investigated. The water absorption was determined by four different methods such as absorption of water after immersion, initial water absorption, water absorption capacity and saturation rate with water. Linear dependences between water absorption parameters and the structural parameters of individual pulps as well as all tested pulps were obtained. The correlation coefficients obtained within individual bleached kraft pulps were from 0.95 to 1.00 and within the whole group of pulps were from 0.86 to 0.98. Relative bonded area and air permeability were found to be the most suitable parameters for predicting of initial water absorption and saturation rate with water.

Porosity and pore size distribution of recent and ancient buried Phoebe Zhennan wood determined by mercury intrusion porosimetry

The porosity and pore size distribution of recent and ancient buried Phoebe zhennan are studied in this paper by means of mercury intrusion porosimetry. The results show that the micropore and mesopore diameters of recent and buried wood are mainly distributed in range of 40.3 nm and 183.1 nm respectively, while the macropore in 45276.6 nm and 3503.9 nm separately. For both samples, the pores with diameters below 349.9 nm account for about 60% of the total intrusion volume, and contribute more than 98% of the surface area. The cumulative pore area of recent wood is slightly greater and the pore diameter ranges from 50.3 nm to 349.9 nm. While the cumulative pore area of buried wood is significantly larger than and the pore diameter ranges until 50.3 nm. These results can provide information for further investigations on the sorption behaviour and the liquid permeability of ancient buried wood.