Determination of mode I fracture behavior of southern yellow pine (Pinus taeda L.) wood using single-edge-notched bending test

The fracture behavior of southern yellow pine (Pinus taeda L.) was experimentally analyzed in the radial-longitudinal and the radial-tangential crack propagation systems using a single-edge-notched bending test method in mode I loading condition. Three fracture parameters, the initial slope, the fracture toughness, and the specific fracture energy, were determined from the obtained load-deformation curves of each test sample. The results were statistically analyzed and compared with each other using the independent samples t-test. The radial-longitudinal crack propagation system had a significantly greater fracture toughness than in the radial-tangential crack propagation system. The stiffness in the radial-longitudinal system was also significantly higher than in the radial-tangential system. It was observed that the crack growing in the tangential direction needed more energy per unit area to separate a wood sample into two halves. However, there was no significant difference between the specific fracture energy values of crack propagation systems.

Short notes: The low-velocity impact response of bio-composites

In this paper, an experimental investigation on the low-velocity impact response of wood-based bio-composites is presented. This study is to map the suitability of plant-based materials instead of petroleum-based plastic as a constituent raw material in composites. Wood-based composites panels were made from southern yellow pine (SYP), corn starch (CS), and methylene diphenyl diisocyanate (MDI) using a Diefenbacher hot press. The impact performance of the specimens was evaluated in terms of energy absorption capacity. Five types of bio-composites were prepared with varying compositions with SYP: 4% MDI; 2% CS and 2% MDI; 2% CS and 4% MDI; 4% CS and 4% MDI. These samples were prepared at two different manufacturing pressures. The bio-composite produced with higher manufacturing pressure had the highest absorbed energy among five different types of bio-composites, this shows that material behavior at impact loading is strongly dependent on the manufacturing pressure during fabrication.