Determination of mode I fracture behavior of southern yellow pine (Pinus taeda L.) wood using single-edge-notched bending test

The fracture behavior of southern yellow pine (Pinus taeda L.) was experimentally analyzed in the radial-longitudinal and the radial-tangential crack propagation systems using a single-edge-notched bending test method in mode I loading condition. Three fracture parameters, the initial slope, the fracture toughness, and the specific fracture energy, were determined from the obtained load-deformation curves of each test sample. The results were statistically analyzed and compared with each other using the independent samples t-test. The radial-longitudinal crack propagation system had a significantly greater fracture toughness than in the radial-tangential crack propagation system. The stiffness in the radial-longitudinal system was also significantly higher than in the radial-tangential system. It was observed that the crack growing in the tangential direction needed more energy per unit area to separate a wood sample into two halves. However, there was no significant difference between the specific fracture energy values of crack propagation systems.