Analytical study on axial and eccentric compressive behavior of poplar column strengthened by BFRP

In this work, the compression behaviour of the Xinjiang poplar column was reinforced by basalt fibre reinforced polymer (BFRP) strips with different reinforced configurations, and the numerical simulations were performed on the axial and eccentric compressions of poplar columns unreinforced and reinforced with BFRP to assess the effect of the bearing capacity and deformation of the columns. The results show that the use of BFRP to reinforce the Xinjiang poplar column effectively improves its axial compressive bearing capacity (axial compression) and bending bearing capacity (eccentric compression), and at the same time, the bearing capacity and stiffness of the columns strengthened by BFRP increased with the bonding area of BFRP.

Timber column seismic response design

The timber column seismic response has been analyzed when it has been subjected to near-fault ground motion. The cyclic displacement and cyclic strain have been investigated. It needs to indicate in most of the literature acceleration history of earthquake used in the numerical analysis is not well clear for the reader. The results showed that the damping ratio, strain energy, and nonlinear deformation were changed in respect to the frame geometry. The innovation of this paper is to develop cycling graphs by means ABAQUS for study timber column seismic response and improve the concept of strain energy in understanding displacement mechanism.