Stepwise Extraction of Hemicelluloses with Water and Alkali from Larch Wood and their Sugar Compositions

The aim of the present study was to isolate hemicelluloses by stepwise extraction with water and alkali from larch (Larix principis-rupprechtii Mayr) sapwood and heartwood. One water-soluble arabinogalactan (AG) and three alkali-soluble hemicelluloses- arabinoglucuronoxylan (AGX), galactoglucomannan (GGM) and glucomannan (GM) were obtained. The yield of AG extracted with hot-water from larch heartwood was 7.57%, it was 17.96% in total of three alkali-extracted hemicelluloses. There was no significant difference in the yield of hemicelluloses from sapwood and heartwood. Monosaccharide compositions of the hemicelluloses were determined by high performance liquid chromatography after acid hydrolysis. The results showed that galactose and mannose were the main glycosyl units of hemicellulose, followed by xylose. Galactose mainly derived from AG, whereas mannose and xylose originated from alkali-extracted hemicelluloses.

Surface wetting of selected wood species by water during initial stages of weathering

Currently, the trend of using untreated wood elements in the exterior is becoming more progressive. The rainwater nevertheless needs to be recognized as an important factor increasing photo-degradation of wood and causing other damages as splits, cracks and deformations. The aim of this work is to determine the influence of initial stages of weathering on wetting properties of wood surfaces evaluated by the contact angle measurements using goniometer Krüss DSA 30E. Nine wood species were tested during 12 months of weathering: spruce, larch, pine, Douglas fir, oak, black locust, maple, alder and poplar. The lower decrease of the contact angle of water drop was observed on maple, alder and black locust surfaces, which predicts higher durability and slower degradation during weathering. On the contrary, the higher decrease of contact angle and higher hydrophilicity of wood surfaces was observed on all softwoods and oak and poplar as well.