This article is focused on the research of particleboards (PB) composed of wood particles from spruce logs and recycled crushed plastic granulates. Crushed plastic granulates sized from 1.0 to 4.0 mm were obtained from worn automobiles by recycling, specifically painted and unpainted bumpers. The proportion of plastic granulate in the particleboards represented 10%, 15%, and 20% of the total weight of the composites. In the production of PB, urea-formaldehyde resin and paraffin emulsion were used as a binder and ammonium nitrate was used as a hardener. The aim of the article was to compare the selected properties of PB containing plastic filler with pure PB. Mechanical properties (tensile and bending strength), and physical properties (water absorption and thickness swelling) were evaluated according to EN 319, EN 310 and EN 317. Based on the results, it can be stated that the bending strength and physical properties of PB containing plastic filler were significantly better compared to pure PB. On the contrary, the tensile strength values were lower in most cases

Ecotoxicological Tests of the Particleboards Containing Rubber Waste

The article is focused on the production and environmental evaluation of wood composites using waste rubber in the construction industry. Used aqueous extracts were prepared from the experimental wooden composites with various additions of the waste rubber from tires and waste seals. The pH value and organic pollution (by COD) were determined in the aqueous extracts. The effect on the environmental components (aquatic and terrestrial) was ecotoxicologically tested using the test organisms Sinapis alba, Lemna minor and Daphnia magna. Preliminary acute ecotoxicity tests were performed.

Effects of hot pressing parameters on the properties of hardboards produced from mixed hardwood tree species

In this work, wet-process fibreboards (hardboards) were produced in the laboratory using industrial wood fibres of the species European beech (Fagus sylvatica L.) and Turkey oak (Quercus cerris L.) at the total volume of 40%, and white poplar (Populus alba L.) at 60% volume. The effects of hot pressing pressure (varied from 3.3 MPa to 5.3 MPa) and pressing time (from 255 s to 355 s) on the physical and mechanical properties of hardboards were investigated and optimal values of the parameters for fulfilling the European standard requirements were determined. It was concluded that hardboards with acceptable physical and mechanical properties may be produced from 60% poplar wood waste and residues, combined with 40% hardwood raw materials (beech and oak) by regulating the hot pressing regime only, i.e. pressure and pressing time. The following minimum parameters for producing hardboards from mixed hardwood tree species were determined: a pressure of 4.6 MPa and a pressing time of 280 s.