The effect of the circular saw blade body structure on the concentric distribution of the temperature along the radius during the wood cutting process

The paper presents the experimental results of a research aimed at the distribution of the temperature on thecircular saw blade body. The temperature was measured at four distances from the centre of the circular saw blade body (60 mm, 70 mm, 80 mm, 90 mm) by means of an infrared thermometer. Three circular saw blades with the diameter of 350 mm and a variable adjustment of the body (without slots and coating, with slots and without the coating, with both slots and coating) were used for the longitudinal sawing of the spruce wood (Picea excelsa) with the thickness of h = 25 mm. Feed speed vf = 12 m•min-1 and cutting revolutions n = 4000 min-1 were constant. The measured temperature was in the range from 22°C to 30°C. The highest measured temperatures were recorded on the circular saw blade with the slots and coating.

Test analysis and verification of the influence of milling cutter blade shape on wood milling

In this paper, the influence law of cutting tools with different blade shapes in the process of wood milling was studied. Keeping the cutting speed, cutting depth, cutting width unchanged, the blade shapes of milling cutter were the research object, the cutting force, cutting vibration, and chip morphology change under different feed rate were discussed, the surface roughness of the processed material was analyzed under down milling and up milling. The results showed that when the feed rate increased from 6 m.min-1 to 14 m.min-1, the cutting force in up milling was less than that in downing milling, the cutting vibration of upright milling cutter with spiral curved blade was the smallest, it increased gradually in the range of 13.6 m.s-2 – 27.4 m.s-2 in up milling. On the whole, the surface roughness of the workpiece in down milling was better than that in up milling. The experimental study on the cutter milling blade shapes had a guiding significance for improving the precision of surface machining and provided a theoretical reference for the selection of process parameters in the milling process.