A comparison of metabolites in wood-forming tissues from eight commercial timber tree species of Heilongjiang province in China

Four coniferous and four deciduous commercial tree species from Northeastern of China were selected to investigate the differences of metabolites in wood-forming tissues by gas chromatography-mass spectrometry. The results showed that the identified metabolites mainly consisted of neutral sugars, lipids, and organic acids. The mean contents of both arabinofuranose and 1-cyclohexene-1-carboxylic acid were higher in coniferous trees than in deciduous ones. Similarly, the D-fructose and D-glucose content was significantly higher in coniferous trees than deciduous trees, but the total contents of these two sugars was roughly equal among most tree species. The mean content of lactic acid, glycerol and malic acid was lower in coniferous trees than deciduous trees. The malic acid content decreased in later-stages of wood formation than in early-stage for all tree species. The content of L-proline and myo-inositol was greater in later-stage of wood formation than early-stage. The content of octadecanoic acid, D-fructose and D-glucose decreased in later-stage of wood formation for most tree species. All of this suggested that the metabolites in wood-forming tissues showed the significance of species-specific and seasonal dynamic differences among the eight tree species.

2D-DIGE identification of proteins in wood-forming tissue of Pinus koraiensis seedling stem after artificial bending treatment

Compression wood is an ideal model for exploring the molecular mechanism of wood formation. To supplement the proteome data in compression wood formation, two-dimensional difference gel electrophoresis (2D-DIGE) proteome technology was used to investigate the protein response to bending the stem of Pinus koraiensis seedlings. The results showed that most of the proteins in wood-formation tissues were distributed in pH from 4-8 and the molecular weight was around 30-97 KDa. In total 24 identified proteins were mainly functional on amino acid metabolism, cell wall synthesis, secondary metabolism, and stress response. Proteins related to methionine pathway and lignin biosynthesis were up-regulated in the formation of the compression wood. On the contrary, lipid metabolism-related proteins were down-regulated during the formation of the compression wood. In additional, some proteins involved in energy metabolism and photosystem were also changed in the tissues during the formation of the compression wood. These findings suggested that 2D-DIGE was a feasible and timesaving technology in proteome analysis of wood-forming tissue. Moreover, proteins were not involved in lignin synthesis pathways, but other metabolites were changed as a response to stem bent treatment. The identified proteins in compression wood formation insight to further investigating the molecular mechanism of wood cell wall biosynthesis.