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ABSTRACT

Static load tests were carried out on three kinds of triangular girder trusses with different 
diameter wood dowels, and the effects of that on the structure of girder trusses were discussed. 
It was found that there was a good synergy between the wood dowels and the girder trusses. 
Among the triangular girder trusses with different diameters, the 16 mm diameters had  
the best energy dissipation performance increased by 184% and deformation resistance  
of 0.73 mm; the 20 mm diameters had the best stability performance, the better bearing capacity  
of 60.42 kN and deformation resistance of 0.82 mm. The bearing capacity of the double girder 
trusses was 2.06-2.25 times that of two single trusses, which had the ability to ‘one plus one  
is greater than two’.

KEYWORDS: Triangular girder truss, truss joint, anti-deformation capability, load-carrying 
capacity. 
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INTRODUCTION

Wood structure building is an important representative of ecological architecture. In order  
to save energy, reduce emissions, relieve the pressure on the environments and resources  
in the whole life cycle of buildings and achieve the recycling and sustainable development  
of materials, the promotion and application of wood structures has become a consensus  
of the whole society  (Yang et al. 2020).

As one of the main forms of modern wood structure, light wood frame construction  
has excellent dimension lumber processing, certification system and mature prefabricated 
component manufacturing technology (Madsen 1992) compared with heavy timber construction. 
Furthermore, it also has the advantages of short construction cycle and low cost (Prochazka  
et al. 2014). Among them, light wood trusses are one of the main load-carrying components  
of light wood frame construction. Nowadays, more than 60% of residential buildings  
in North America use wood trusses, of which about 95% of new residential buildings in Canada 
are built with wood trusses. In addition, wood trusses have been widely used in Europe, Asia  
and other regions. With the widespread application of light wood frame construction,  
the application of wood trusses in modern buildings has become more and more extensive. 
However, the load-carrying capacity of common triangular wood trusses is limited that the suitable 
span of Howe type wood trusses with the best mechanical performance is no more than 12 m.  
This limits the scope of application of light wood frame construction roof system and also hinders 
the promotion and development of wood trusses to some extent. The appearance of triangular 
girder trusses has effectively solved these problems. By combining several trusses of common 
triangular wood trusses into one structural component, the section size of the component could be 
increased to obtain better load-carrying capacity, deformation resistance and stability, so as to meet 
the requirements of larger span (Zhang et al. 2012, Yang 2014,  Que et al. 2015, He et al. 2015).

At present, researches on wood trusses mostly focus on the repair technology, metal tooth 
plate connection of single truss and light wood truss system. In contrast, the study of girder 
trusses has hardly been involved (Gupta et al. 2005, Gupta et al. 2004, Rittenburg et al. 2003, Via  
et al. 2001, Munafòet et al. 2015, Fauziyah et al. 2016, Underwood et al. 2001, Song et al. 2012, 
Gupta et al. 2004, Cabrero et al. 2009, Islam et al. 2017, Mohamadzadeh et al. 2015, Guntekin 
2007, 2009, Sandanus et al. 2016, Moya et al. 2017) due to the common use of girder trusses  
in engineering, which has no design value reference. This raises several security issues.  
In the previous study (Wang et al. 2019, Gao 2017), the team members found that the connection 
of parallel chord girder trusses connected with wood dowels had a good synergistic effect and could 
effectively solve the instability problem of a single truss. So in order to explore the connection 
mode and performance between the trusses with different structural forms, this paper conducts 
experimental research on triangular girder trusses.

MATERIAL AND METHODS

In order to explore the influence of the mechanical properties of triangular girder 
trusses with different diameter wood dowels, static loading tests were carried out on the Fink  
double trusses with 6 m span and 1.5 m height of different connection modes according  
to GB/T 50329 (2012). The number and identifier of specimens were shown in Tab. 1.  
Among them, ST stands for single truss, GT for girder truss.
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Tab. 1: Number and identifier of trusses.
Type of trusses Two single trusses Double girder trusses
Wood dowel - 16 mm 18 mm 20 mm

Identifier
ST-1 GT-D16-1 GT-D18-1 GT-D20-1

ST-2 GT-D16-2 GT-D18-2 GT-D20-2

Materials
The material used in the test was Larix gemlimii, imported from Russia. The material grade 

was class II, section sizes were 38 mm x 89 mm. According to GB/T 50329 (2012), material 
parameters of the specimen were shown in Tab. 2. The density was 0.657 g.cm-3, and the moisture 
content was 17.4%, according to GB/T 1928 (2009). The tooth plates used in the experiment  
were galvanised and made in China. The performance parameters were shown in  Tab. 3.
Tab. 2: Material parameters of specimens (units: MPa).

Modulus of elasticity Modulus of rupture Compressive strength 
along grain

Tensile strength  
along grain

Transverse 
compressive strength

12220.9 ± 6.21* 85.32 ± 1.18* 45.15 ± 4.3* 10.21 ± 1.25* 7.6 ± 1.8*
*Standard deviation.

Tab. 3: Performance parameters of tooth plate.

Tooth plate thickness 
(mm)

Density of plate teeth 
(each/mm2)

Length of plate teeth 
(mm)

Elastic modulus 
 of steel  
(GPa)

Tensile yield strength 
of steel  
(MPa)

0.90 0.012 8.6 203 248

Specimen processing
The single truss was connected by tooth plates, which was first positioned manually  

and then pressed by a f lat press with a pressure of 13 MPa. The processing of girder truss  
was based on two single trusses that were stacked. The joint position was drilled out in advance 
to ensure that the hole diameter was 0.5 mm smaller than wood dowels, which ensured a tight 
connection. The location of wood dowels in Fig. 1 was selected according to the mechanical 
characteristic of the truss joints. On this basis, a pistol drill or bench drill was used to drill wood 
dowels into the holes to form joints. Among them, The wood dowel was Fagus sylvatica with  
a diameter of 16 mm,18 mm or 20 mm and a length of 80 mm.

Fig. 1: The dowel  joints  location.

Loading system and device
The test was carried out based on the method of hierarchical loading test for trusses  

in the standard for test methods of timber structures GB/T 50329 (2012), and the loading 
system was shown in Fig. 2, where Pk was calculated according to the Load code for the design 
of building structures GB 50009 (2012), and the result was Pk  = 4.6 kN.
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Fig. 2: Continuous loading system according to GB/T 50329 (2012).
The loading procedure was divided into three stages: pre-loading stage T1, standard loading 

stage T2 and destructive loading stage T3 (Fig. 2). The loading device in Fig. 3 was designed 
on the basis of the microcomputer-controlled elector-hydraulic servo combined shear wall 
experimental system. Due to the large span of the truss and its poor stability during loading,  
o ensure the test, the anti-roll device was essential for the loading of the wood trusses. Based on 
comprehensive laboratory conditions, this study designed an anti-roll device suitable for this test 
based on the supporting device that comes with the test machine, as shown in Fig. 3b. The screw 
was used to connect the anti-rolling wood strip to the support device of the testing machine itself, 
and to ensure that the wood strip was infinitely close to the truss, so that every part of the truss 
was laterally supported, ensuring the stability of the entire truss load.

(a)                                                (b)
Fig. 3: Loading device: (a) design drawings device, (b) practical setting.

RESULTS AND DISCUSSION

Analysis of experimental phenomena
The trusses under preloading stage T1 and standard loading T2 stages all showed good 

performance. While in the destructive loading stage T3, the failure modes of trusses were  
the roughly same. The tooth of the metal tooth plate at the support joints D and G started  
to separate from the wood, finally occurring the tooth plate separation failure. ST-1 showed  
no obvious experimental phenomena in preloading stage T1 and standard loading T2 stages. 
When the load increased to about 5.50 kN, G-joint (Fig. 4a) appeared slightly bulging.  
When the load increased 8.36 kN, G-joint in Fig. 4b showed tooth plate separation failure. 
GT-D16-1 showed no obvious experimental phenomena in preloading stage T1 and standard 
loading T2 stages. When the load increased to about 12.90 kN, each tooth plate at D-joint  
(Fig. 5a) appeared slightly bulging. Meanwhile, the tooth plates of the double girder truss 
between the two single trusses also showed slightly bulging at G-joint (Fig. 5b). With the increase 
of the load, the tooth plates slightly bulged and gradually evolved into tooth plate separation. 
When the load reached 19.26 kN, each D-joint tooth plate (Fig. 5c) completely separated  
from the lower chord.
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(a)                                           (b)
Fig. 4: The failure phenomena of ST-1: (a) load 5.50 kN, (b) load 8.36 kN.

(a)                    (b)                    (c)
Fig. 5: The failure phenomena of GT-D16-1: (a) D-joint at 12.90 kN, (b) G-joint at 12.90 kN,  
(c) D-joint at 19.26 kN.

However, the test did not stop after the tooth plate separation failure at the support joint. 
Two single trusses lost the bearing performance, while the girder truss showed wood split failure 
at B-joint when the load reached about Pk. The phenomenon was shown in Fig. 6. It showed 
that compared with two single trusses, girder truss had better security performance. At the end  
of each test, the wood dowels were taken out, as shown in Fig. 7. The figure showed  
that there were no obvious phenomena in wood dowels. This meant the wood dowel could remain  
in the elastic range when the final damage occurred, so the coordination between the two single 
trusses could be maintained very well.

(a)                                          (b)
Fig. 6: Wood tearing failure under loading B-joint: (a) front, (b) back.

Fig. 7: Three kinds of wood dowels after test.
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In summary, all the wood trusses suffered from tooth plate separation failure at the support 
joints. When it continued loading after the damage, a second failure would occur at the loading 
point B, indicating that the loading point was the second weakest link of the triangular wood 
truss. From the analysis of the axial force of single triangular wood truss (Fig. 8) could be seen that  
the axial forces at the rod ends of BD and CG were the largest, so the rod ends of BD and  
CG were the weakest part of the truss. The test results were consistent with the theoretical 
predictions.

Fig. 8: The axial force of single triangular wood truss.
Stability performance of truss

As shown in Fig. 9, the mid-span deflection of the lower chord of each truss was obtained, 
showing that GT-D20 truss had the lowest degree of dispersion, which indicated that  
the performance of this kind was more stable. It was not difficult to find from the figure 
that the four types of trusses all showed normal test conditions, and had good consistency  
in first two stages, and the variability of wood made different types of trusses had different 
results in the third stage. From the mid-span load-deflection curves of T1 and T2 stages (Fig. 10)  
can be seen that the degree of dispersion of the curve was GT-D18 > GT-D16 > GT-D20  
within the girder trusses. Combining the two curves found that the stability performance  
of 20 mm dowel-connected girder truss was the best.

(a)                                                   (b)

(c)                                                  (d)
Fig. 9: Displacement variation in the middle of the lower chord span of each truss: (a) ST,  
(b) D16, (c) D18, (d) D20.
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(a)                                           (b)
Fig. 10: The mid-span load-displacement curves: (a) T1 stage, (b) T2 stage.
Energy dissipation performance of truss

The area covered by the load-displacement curve in stage T2 could be obtained,  
as shown in Tab. 4. The area represented the energy dissipation performance of the truss.  
From Tab. 4, it could be seen that the area covered by load displacement curve of GT-D16  
truss was the largest, which showed the energy dissipation performance of the 16 mm  
dowel-connected triangular girder truss was the best. Compared with the energy dissipation 
performance of ST, GT-D16 increased by 184%, GT-D18 increased by 165%, and GT-D20 
increased by 110%. When the standard load had completed, each truss entered the stage  
of elastic recovery. After unloading and 30 minutes of no-load, each truss had plastic deformation. 
The elastic recovery size and the percentage of the recovery size to the end deflection  
of the continuous load were shown in     Tab. 5. As could be seen, the elastic recovery capacity  
of double girder trusses was stronger than two single trusses, and all were above 60%.

Tab. 4: Area wrapped in load-displacement curve of truss joints.

Identifier  
of truss

Area wrapped in load-displacement curve  
(joints /mm2)

Node A Node B Node C Mid-span Node E Node F Average
ST 1.29 1.25 1.26 1.96 1.22 1.19 1.36

GT-D16 3.77 4.37 3.60 5.21 2.91 3.30 3.86

GT-D18 4.31 3.81 3.53 4.06 3.08 2.79 3.60

GT-D20 2.01 3.06 2.51 4.70 2.53 2.34 2.86

Tab. 5 : Elastic recovery of truss after unloading.

Identifier of truss
Elastic recovery size of lower chord  

(joints/mm)
Mid-span Node E Node F Average

ST-1 1.42 (55.3) 1.13 (59.2) 1.16 (65.9)
1.34(56.2)

ST-2 1.62 (52.1) 1.42 (56.3) 1.24 (52.5)

GT-D16-1 1.89 (73.5) 1.60 (71.4) 1.60 (71.7)
1.64(66.9)

GT-D16-2 1.68 (56.4) 1.53 (63.8) 1.51 (64.3)

GT-D18-1 2.16 (60.5) 1.85 (60.3) 1.70 (70.0)
1.74(62.2)

GT-D18-2 2.07 (67.9) 1.57 (54.5) 1.74 (59.8)

GT-D20-1 2.16 (64.9) 1.92 (69.6) 1.67 (75.9)
1.95(70.3)

GT-D20-2 2.20 (67.3) 2.12 (67.9) 1.67 (75.9)
*Values in brackets represent % of the recovery size to the end deflection of the continuous load.
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Residual deformation of truss
The residual deformation of the truss after unloading could be obtained from the second 

part of the load-displacement diagram of stage T2, as shown in Tab. 6. It could be seen from the 
table that the residual deformation of GT-D16 was the smallest, but only 0.09 mm different from  
that of GT-D20 truss. Therefore, the creep-resistant deformation ability of 16 mm  
dowel-connected girder trusses were similar to 20 mm dowel-connected girder truss,  
but the former was better.

Ultimate bearing capacity of truss
The residual deformation of the truss after unloading could be obtained from the second 

part of the load-displacement diagram of stage T2, as shown in Tab. 6. It could be seen from  
the table that the residual deformation of GT-D16 was the smallest, but only 0.09 mm different 
from that of GT-D20 truss. Therefore, the creep-resistant deformation ability of 16 mm  
dowel-connected girder trusses were similar to 20 mm dowel-connected girder truss,  
but the former was better.

Tab. 6: Residual deformation of truss lower chord after T2 unloading (units: mm).

Identifier of truss Mid-span Node E Node F Average

ST 1.29 0.93 0.9 1.04

GT-D16 0.82 0.66 0.70 0.73
GT-D18 0.97 1.12 1.04 1.04
GT-D20 1.05 0.85 0.55 0.82

Ultimate bearing capacity of truss
In the destructive loading stage T3, all trusses suffered from tooth plate separation failure 

at the bearing joints. However, the maximum bearing capacity of each truss was different  
due to the different performance of trusses and the influence of wood variability. The ultimate 
bearing capacity of various truss tests was shown in Fig. 11. The maximum bearing capacity 
of ST, GT-D16, GT-D18 and GT-D20 was 26.91 kN, 55.68 kN, 57.96 kN and 60.42 kN 
respectively. It could be seen that the ultimate bearing capacity of truss was GT-D20 >  
GT-D18 > GT-D16 > ST. The bearing capacity of the double girder trusses was 2.06-2.25 times 
that of two single trusses. According to the relationship between wood dowel diameter and 
ultimate bearing capacity of truss, they were proportional. The results showed that the bearing 
capacity of the triangular girder truss connected by 20 mm wood dowels was the strongest.

        
Fig. 11: Ultimate bearing capacity of various 
types of trusses.

Fig. 12: Stiffness degradation.
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Stiffness of truss
The stiffness of the two-stage truss was obtained from the load-displacement diagrams  

of stage T2 and stage T3, respectively, as shown in Tab. 7 and Tab. 8. From Tab. 8, it could be seen 
that the stiffnesses of girder trusses were GT-D16 > GT-D18 > GT-D20 > ST. From Tab. 7 and  
Tab. 8, it could be seen that the stiffness degradation of the two stages trusses was obvious, 
and the degradation sizes were shown in Fig. 12. The stiffness degradation of GT-D18 was  
the greatest among the wood dowel-connected girder trusses, while GT-D16 and GT-D20  
were smaller, which indicated that GT-D16 and GT-D20 had good synergy.

Tab. 7: Curve stiffness during loading in T2 stage (units: kN.mm-1).
Identifier of truss Mid-span Node E Node F Average
ST 1.11 1.27 1.44 1.27

GT-D16 1.88 2.22 2.27 2.12
GT-D18 1.66 1.99 2.34 2.00
GT-D20 1.62 1.66 2.15 1.81

Tab. 8: Curve stiffness during loading in T3 stage (units: kN.mm-1).
Identifier of truss Mid-span Node E Node F Average
ST 0.80 1.03 1.04 0.96

GT-D16 1.44 1.74 1.75 1.64

GT-D18 1.25 1.49 1.55 1.43

GT-D20 1.15 1.37 1.50 1.34

Discussion
Researches on wood trusses mostly focus on the repair technology, metal tooth plate connection 

of single truss and light wood truss system. In contrast, the study of girder trusses has hardly  
been involved (Gupta et al. 2005, Gupta et al. 2004, Rittenburg et al. 2003, Via et al. 2001, Munafòet 
et al. 2015, Fauziyah et al. 2016, Underwood et al. 2001, Song et al. 2012, Gupta et al. 2004, 
Cabrero et al. 2009, Islam et al. 2017, Mohamadzadeh et al. 2015, Guntekin 2007, 2009, Sandanus  
et al. 2016, Moya et al. 2017) due to the common use of girder trusses in engineering, which  
has no design value reference. This raises several security issues. In the previous study (Wang  
et al. 2019, Gao 2017), the team members found that the connection of parallel chord girder 
trusses connected with wood dowels had a good synergistic effect and could effectively solve  
the instability problem of a single truss. So in order to explore the connection mode and performance 
between the trusses with different structural forms, this paper conducts experimental research  
on triangular girder trusses. It could be seen from the pre-loading stage that the residual deformation  
of the wood dowel-connected girder trusses were much smaller than that of the common wood 
trusses in previous research. The deflection value of corresponding joints at the loading stage  
of standard load was larger than that at the pre-loading stage, indicating that the increase of holding 
load would affect the deflection value, and the greater the holding load, the greater the deflection 
value. Under the same load, the length of load holding time had a certain influence on the deflection 
of truss during load holding period. 

The support joint was the weak link of truss. The  separation of the teeth started from  
the metal tooth plate at the support joint, then evolved into partial separation failure, and finally 
occurred complete separation failure. There was no significant failure phenomenon at other joints, 
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and the load during the separation of the teeth was about two-thirds of the maximum load.  
After the separation failure of the support joint, loading continued. The second failure occurred 
for wooden trusses after they were loaded to the size of Pk, which was the split failure of the wood 
at joint B, indicating that the girder trusses had good safety. 

Except for an indentation on the surface of the dowel with a diameter of 16 mm, there was  
no obvious phenomenon in the other two kinds. The results showed that compared with two 
single trusses, the dowel-connected girder had better synergies. In the multiple wood trusses 
connected with wood dowels, the stiffness was inversely proportional to the ultimate bearing 
capacity, and inversely proportional to the diameter of the wood dowels.

CONCLUSIONS

Above all static loading tests were carried out on triangular girder truss with different 
diameter wood dowels. The following conclusions were obtained by analysing the experimental 
phenomenon of various types of trusses in the destructive loading stage T3 and the experimental 
data of preloading stage T1, standard load loading T2 and destructive loading stage T3. From  
failure mode, the wood dowel joints still had structural load-carrying capacity after  
the first failure, and the second failure occurred when the continuous loading reached  
the Pk value, which indicated that the girder truss connected by wood dowels had better safety.  
At the same time, there was a good synergy between the wood dowels and the girder trusses. 
The 20 mm wood dowel-connected girder truss had the best stability performance, the better 
bearing capacity of 60.42 kN and deformation resistance of 0.82 mm. From the ultimate bearing 
capacity of truss, the bearing capacity of the double girder trusses was 2.06-2.25 times that  
of two single trusses, which had the ability to ‘one plus one is greater than two’. The energy 
dissipation performance of girder truss connected with 16 mm diameter wood dowel increased 
by 184% was the best and deformation resistance of 0.73 mm, slightly better than the 16 mm 
one. From the comprehensive performance, the 20 mm wood dowel-connected girder truss 
had the best connection effect in the triangular girder trusses. 
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