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ABSTRACT

The concentration of selected heavy metals: chromium (Cr), manganese (Mn), iron (Fe), 
nickel (Ni), copper (Cu) and zinc (Zn) in 5-year-old wood of Populus trichocarpa before and after 
steam explosion (SE) and liquid hot water (LHW) pretreatments was studied. The concentration 
of the above heavy metals in the liquid fraction obtained after pretreatments was also studied. The 
studied problem of heavy metals in lignocellulosic biomass is an interesting and important issue 
in the context of bioethanol production technology. An X-ray f luorescence spectrometer (XRF) 
was used to analyse the concentration of heavy metals. The change of concentration of the tested 
elements in wood biomass after pretreatment was small (except for iron). On the other hand, the 
average concentration of iron in wood biomass of a 5-year-old Populus trichocarpa, after SE and 
LHW with duration of the pretreatments 15 and 60 min, increased about 24-fold to 28-fold, 
comparing to its average concentration in native wood. During the pretreatment process, wood 
biomass absorbed the iron that at high temperatures passed from the pretreatment equipment to 
the solution. The average concentration of the elements under research in liquid fraction obtained 
during SE and LHW of wood biomass with duration of the pretreatments 15 and 60 min was at 
a low level. 

KEYWORDS: Populus trichocarpa, poplar, steam explosion, liquid hot water, liquid fraction, 
heavy metals.

INTRODUCTION

Nowadays biomass hydrolysis is preferably performed via the enzymatic process, although 
acidic hydrolysis is better known. Acidic hydrolysis causes a higher negative impact on the natural 
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environment and that is why the application using enzymes has been focused on. Enzymatic 
hydrolysis is basically a well known process and has been used many times by different authors 
(Mansfield et al. 1999, Palonen et al. 2004, Martin et al. 2008, Kumar and Wyman 2009, Studer 
et al. 2011, Antczak et al. 2018, Antczak et al. 2019), but the high cost of the enzymes to be used 
make the process unprofitable. The content of possible enzymatic hydrolysis inhibitors in raw 
material is also a very important factor which should be taken in to account.

The technological process of biofuel production from wood biomass can be hindered 
by organic and inorganic inhibitors. Among organic substances, it is worth mentioning 
furan aldehydes created mostly as a result of decomposition and further transformations of 
hemicelluloses to furfural, 5-hydroxymethylfurfural, as well as soluble phenolic compounds 
appearing due to lignin degradation (Palmqvist and Hahn-Hägerdal 2000a, b, Klinke et al. 2002, 
Garcia-Aparicio et al. 2006, Alvira et al. 2010, Horn et al. 2011, Tomás-Pejó et al. 2011, Chandel 
et al. 2013, Jönsson et al. 2013). 

Poplar is a known fast-growing species which can be used for biofuel production. It may 
be useful as a raw material further processed to biogas or liquid biofuels (Antczak et al. 2014, 
Antczak et al. 2018).

Inorganic inhibitors include some heavy metals which can accumulate in the trees depending 
on their growth environment, as well as in the wood during the process of its impregnation 
finish, as well as during pretreatment of lignocellulosic biomass during its preparation for biofuel 
production. The source of contamination with metals can be compounds and alloys used to 
manufacture the blades of industrial wood grinders, as well as reactors, in which the pretreatment 
processing takes place (Palmqvist and Hahn-Hägerdal 2000a,b). During pretreatment, high 
temperature and pressure can facilitate the transfer of metals from the machines into wood 
biomass. Metals can also pass to the liquid fraction created after pretreatment  (Warzee et al. 
1966). The salts of chromium, iron, nickel and copper are metal compounds considered to be 
inhibitors in wood biomass pretreatment processes and its fermentation (Warzee et al. 1966, 
Chandel et al. 2013). Moreover, some of metal ions may additionally bind to lignin, causing 
a change in the energy potential of the biomass leading to an increase of enzymatic hydrolysis 
efficiency (Liu and Zhu 2010, Akimkulova et al. 2016). The process of enzymatic hydrolysis 
of wood biomass leads to ions of such metals being combined with proteins, which causes their 
denaturation and deactivation, and as a consequence: lower efficiency of glucose production. In the 
available literature, there is scarce information on studies of heavy metals concentration released 
during pretreatment such as steam explosion and liquid hot water of poplar wood biomass.

 The aim of this paper was to investigate the concentration of selected heavy metals in 
5-year-old Populus trichocarpa wood biomass before and after SE and LHW pretreatments. The 
concentration of the above heavy metals in liquid fraction obtained after pretreatments was also 
studied.

MATERIAL AND METHODS

Material (mixed sapwood and hardwood) were obtained from the trunk of an about      
5-year-old Populus trichocarpa. The high temperatures used in pretreatment processes of plant 
biomass cause the transmission of chemical compounds from the solid fraction to the liquid 
fraction used as reaction environment.

The measurement of heavy metal concentration in the wood was performed for such metals 
as Cr, Ni, Cu, Mn, Zn and Fe, after the wood was burnt and converted to ashes. On the other 
hand, in the liquid fraction generated after pretreatment, the measurement was conducted directly. 
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The heavy metal concentration was measured with an X-ray f luorescence spectrometer Spectro  
Midex M. The spectrometer was equipped with a 540 x 600 x 2500 mm chamber, with test bench 
positioning with the precision of 2.5 µm. Measurement points were set with the help of a system 
of two cameras controlled by the Spectrum X-labro software, permitting very precise location of 
the measurement points and the position of the sample in relation to the detector. Moreover, the 
device was equipped with an X-ray lamp cooled with air, containing a molybdenum anode. The 
maximum power was 30 W, and the maximum voltage, 50 kV. The heavy metal concentration 
was measured for wood biomass of Populus trichocarpa before and after SE and LHW processes. 

Wood biomass was converted into ashes in a muffle furnace, which took 6 hours at 600°C. 
The increase at temperature from 20°C to 600°C lasted for additional 2.5 hours. Samples were 
converted to ashes in order to concentrate them (Harju et al. 1997).

Wood biomass was subjected to steam explosion in a stainless steel autoclave. According to 
the technical specification (Explo Solution company), the autoclave was made of 316Ti stainless 
steel (complaint with the PN-EN 10088-1) characterized by the following composition: C- max. 
0.080%, Mn- max. 2.00%, Si- 0.75%, P- 0.045%, S- 0.030%, Cr- 16.00 ÷ 18.00%, Ni- 10 ÷ 
14.00%, Mo- 2.00 ÷ 3.20%, Ti- max. 0.70%, N- max. 0.10%. The interchangeable elements of 
the apparatus, in accordance with the technical specification (Explo Solution company), are made 
of CuZn33 brass (complaint with the PN-EN 1652), composed of: Cu- 66.0 up to 68.0%, Pb- 
max. 0.05%, Al- max. 0.02%, Fe- max. 0.05%, Ni- max. 0.3%, Sn- max. 0.1% and Zn- 31.5%.

The wood biomass of a 5-year-old Populus trichocarpa was subjected to the processes of 
SE and LHW. The processes were done in a stainless-steel reactor with a total volume of  
250 cm3. To each of pretreatment process about 20 g of size reduced (fraction between 0.43 and  
1.02 mm) wood was used. Before the pretreatment, the wood in the reactor was supplemented 
with distilled water to a volume of 250 cm3. The ratio of wood to distilled water was 1:12.5. 
The SE and LHW processes were conducted at temperatures of 160°C, 175°C and 190°C, with 
duration of the pretreatments 15 and 60 min. The concentration of selected metals in the liquid 
fraction obtained after pretreatments was tested in drops, whose volume amounted to about  
0.3 cm3 of liquid. In addition, the concentration of heavy metals in distilled water, which was used 
during the pretreatment, was tested. For each processing temperature and pretreatment kind (SE 
and LHW) at least three drops of the same volume were tested, and one point of measurement 
was set in each of them. The test made use of a 2 x 2 mm shutter and time of exposure of 300 sec. 

RESULTS AND DISCUSSION

The results of the concentration of selected metals in native wood (biomass before the 
pretreatments) of a 5-year-old Populus trichocarpa, in wood after high temperature pretreatments 
with different residential times (15 and 60 min), in distilled water and in liquid fraction are 
presented in Figs. 1-6. On the basis of the data presented in Fig. 1, we can conclude that the 
chromium concentration in wood biomass subjected to steam explosion, independently of the 
temperature and time of pretreatment, doubled or tripled, comparing with the concentration of 
this metal in native wood and in distilled water. The average concentration of chromium in liquid 
fraction oscillated between 26.0-29.0 ppm, independently of the steam explosion temperature and 
heating temperature residential time.

The data provided by Zielenkiewicz et al. (2016) indicate that the concentration of chromium 
in a native wood of 2.5-year-old Populus trichocarpa amounted to 11 ppm, which is consistent with 
the data obtained for a native wood of 5-year-old Populus trichocarpa (10.0 ppm). The average 
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concentration of chromium in the wood biomass of the 5-year-old Populus trichocarpa after the 
LHW process with residential times of 15 and 60 min it was similar to its concentration in wood 
biomass after steam explosion, and fell in the range between 17.0 ppm and 41.0 ppm (Fig. 1).

Fig. 1: Chromium concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.

In the wood biomass of a 2.5 year-old Populus trichocarpa subjected to steam explosion at 
the temperatures of 160°C and 190°C, the concentration of chromium was 17 ppm and 32 ppm, 
respectively. In the wood biomass of a 5 year-old Populus trichocarpa subjected to steam explosion 
at the temperatures of 160°C, 175°C and 190°C, the average concentration of chromium was from 
17.0 ppm to 33.0 ppm, in both heating times: 15 and 60 min. To sum up, it can be concluded that 
both native wood and wood biomass after steam explosion have a low concentration of chromium. 
Similarly, in the liquid fraction obtained after SE and LHW, the average concentration of this 
element fell in the range between 14.0 ppm and 29.0 ppm (Fig. 1).

On the basis of data presented in Fig. 2, it can be concluded that the concentration of nickel 
in the wood of the 5-year-old Populus trichocarpa and wood biomass after high temperature 
treatment was similar to the chromium concentration (Fig. 1). In wood biomass after steam 
explosion at the temperatures of 175°C and 190°C, with residential times of 15 and 60 min, the 
average concentration of nickel was two and three times higher than its average concentration in 
native wood or in distilled water, and fell in the range between 34.0 ppm and 51.0 ppm. According 
to Zielenkiewicz et al. (2016), in the wood biomass of a 2.5 year-old Populus trichocarpa subjected 
to steam explosion at the temperatures of 160°C and 190°C, with residential times of 15 and  
60 min, the concentration of nickel amounted to 16 ppm and 40 ppm, respectively. For the liquid 
fraction obtained after steam explosion treatment of the wood biomass of a 5-year-old Populus 
trichocarpa at the temperatures of 160°C, 175°C and 190°C, with residential times of 15 and  
60 min, the average concentration of nickel fell in the range between 38.0 ppm and 41.0 ppm  
(Fig. 2). Similarly to the concentration of chromium and nickel, the average concentration of 
copper in the native wood of a 5-year-old Populus trichocarpa was low and amounted to 14.0 ppm 
(Fig. 3).
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Fig. 2: Nickel concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.

 

Fig. 3: Copper concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.

Also according to Zielenkiewicz et al. (2016), the concentration of copper in the wood of 
a 2.5-year-old Populus trichocarpa amounted to 12 ppm and its concentration increased 6-fold in 
the biomass after steam explosion treatment at 130°C, 3-fold after the treatment at 160°C, and 
5-fold after the treatment at 190°C. On the basis of data presented in Fig. 3, we can see that the 
copper average concentration in wood biomass subjected to pretreatment with SE and LHW, 
with residential times of 15 and 60 min, at the temperature of 190°C increased 4- and 5-fold 
comparing to its average concentration in native wood and increased 3-fold comparing to its 
average concentration in distilled water. The average concentration of copper in the liquid fraction 
changed irregularly together with the increase of process temperature and residential time during 
which the heating temperature was maintained.

Fig. 4 presents data concerning the concentration of manganese in the native wood of  
a 5-year-old Populus trichocarpa, in biomass after SE and LHW processes, as well as in distilled 
water and in the liquid fraction. The native wood of the 5-year-old Populus trichocarpa had 
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a manganese average concentration of 118.0 ppm, which was similar to its concentration in 
the wood of a 2.5-year-old Populus trichocarpa, amounting to 120 ppm (Zielenkiewicz et al. 
2016). The average concentration of manganese in wood biomass after pretreatment with steam 
explosion, independently of the temperature and the residential time, did not change, while 
wood biomass after LHW contained about 10% more of manganese comparing to its average 
concentration in native wood. In the liquid fraction obtained after pretreatment processes of wood 
biomass and in distilled water, the manganese average concentration was low and fell in the range 
between 12.0 ppm and 31.0 ppm (Fig. 4).

 

Fig. 4: Manganase concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.

The average concentration of zinc in the native wood of a 5-year-old Populus trichocarpa 
amounted to 155.0 ppm (Fig. 5) and was similar to its concentration in a 2.5-year-old Populus 
trichocarpa, where it amounted to 160 ppm (Zielenkiewicz et al. 2016). The concentration of zinc 
in wood biomass after SE and LHW processes increased together with the increase in process 
temperature and residential time, from about 10% to about 30%.

 

Fig. 5: Zinc concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.
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According to Zielenkiewicz et al. (2016), the wood biomass of a 2.5 year-old Populus 
trichocarpa subjected to steam explosion at the temperature of 130°C, with residential time of 
15 min, the concentration of zinc increased two-fold comparing to its concentration in native 
wood; while after the process at 160°C it did not change; and it increased by 20% after the steam 
explosion process at 190°C. On the other hand, the concentration of zinc in the liquid fraction, 
generated as a result of pretreatment of wood biomass of a 5-year-old Populus trichocarpa both 
with SE and LHW, changed irregularly together with the increase in process temperatures and 
residential time during which the heating temperature was maintained. 

On the basis of data presented in Fig. 6, we can conclude that the average concentration of 
iron in the wood of a 5-year-old Populus trichocarpa was low and amounted to 54.0 ppm. The 
iron average concentration in wood biomass after pretreatment processes (SE and LHW) at the 
temperatures of 160°C, 175°C and 190°C, with residential times of 15 and 60 minutes, grew from 
about 24 to 28 times, comparing to the iron average concentration in native wood. On the other 
hand, the average concentration of iron in the liquid fraction, generated as a result of pretreatment 
of wood biomass of a 5-year-old Populus trichocarpa both with SE and LHW, was low, as in 
distilled water, between 16.0 ppm and 40.0 ppm. On the basis of the presented data, it can be 
concluded that during the SE and LHW pretreatment processes, wood biomass absorbed the iron 
that passed from the pretreatment equipment to the solution due to high temperatures. The data 
obtained are in line with the findings of Zielenkiewicz et al. (2016), suggesting that the wood 
biomass of a 2.5 year-old Populus trichocarpa subjected to steam explosion at the temperatures of 
130°C, 160°C and 190°C, without maintaining the heating temperature, contained a 43-times 
and 24-times higher iron concentration than the native wood.

 

Fig. 6: Iron concentration in native wood of a 5-year-old Populus trichocarpa, in wood after high 
temperature pretreatments (SE and LHW) with different residential times (15 and 60 min), in distilled 
water and in liquid fraction obtained after above pretreatments.

According to Roberge (1999), an increase in the content of metallic elements in wood 
biomass is caused by the corrosion process of the equipment used for pretreatment by high 
temperature hydrolysis and steam explosion and the contact of steel with substances released from 
wood biomass during these processes. The raw lignocellulosic biomass is prone to absorb heavy 
metals (Kord and Kord 2011).

Out of all the tested elements that can inhibit the bioethanol production process (chromium, 
nickel, copper and iron), the biggest variations happened in case of the concentration of iron 
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in wood biomass, both after SE and LHW, independently of the process temperature and its 
residential time.

On the other hand, the average concentration of iron in the liquid fraction generated during 
the SE and LHW pretreatment processes of a 5-year-old Populus trichocarpa, with residential 
times of 15 and 60 min, was low and fell in the range between 16.0 ppm and 40.0 ppm.

CONCLUSIONS

The average concentration of all the tested elements that can inhibit the bioethanol 
production process (chromium, nickel, copper and iron) was quite low in native wood and ranged 
between 10.0 ppm and 54.0 ppm. The average concentration of manganese and zinc in the native 
wood was higher, at the level of 118.0 ppm and 155.0 ppm, respectively.

The concentration of iron in wood biomass of the 5-year-old Populus trichocarpa after 
pretreatment processes of SE and LHW at the temperatures of 160°C, 175°C and 190°C, 
with residential times of 15 and 60 min, increased from about 24 to 28 times, comparing to its 
average concentration in native wood. This means that during the pretreatment process, wood 
biomass absorbed iron that passed from the pretreatment equipment to the solution due to high 
process temperatures. The iron is an element considered to be a potential inhibitor in bioethanol 
production technology. The average concentrations of the tested elements: chromium, nickel, 
copper, zinc, manganese and iron, in the liquid fraction obtained during the pretreatment of wood 
biomass of a 5-year-old Populus trichocarpa in SE and LHW processes, with residential times of 
15 and 60 min, were low and fell in the range between 10.0 ppm and 90.0 ppm. 
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