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ABSTRACT 

This paper aims to identify the decay types and investigate the chemical alterations 
in the three types of fungal decayed archaeological wood from Dongshan Han Tomb M6  
(ca. 200-100 B.C.) in Taiyuan City, China. Microscopy, FT-IR, 13C NMR and XPS were 
adopted to reveal the features of the samples. The results show that from the microscopic 
and chemical perspectives, these samples are consistent with the characteristics of brown-rot, 
white-rot and soft-rot. However, all the samples show the accumulation of carboxylic acids 
or carboxylate salts from extensive oxidation of lignin, which were not observed in artificial 
fungal decayed wood. Moreover, different fungal decay types and pH values of the samples 
corresponding to the alternative forms of carboxylic acid or carboxylate salt are considered to be 
influenced by combined factors, such as the position in the tomb, groundwater level, moisture 
content, oxygen availability, etc. This study may provide a reference for the deterioration and 
conservation of fungal decayed wooden artifacts in the tomb of northern China where alkaline 
loess is the main soil type. 
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INTRODUCTION

Wood is an excellent natural material for construction and making tools due to its outstanding 
mechanical properties and availability. Our ancestors once made countless wooden crafts, which 
unfortunately, were degraded and sometimes even fully decomposed as a comprehensive result 
of bacteria, fungi, shipworms, insects, fire, physical abrasions, etc. Bacterial decays, especially 
erosion bacteria and tunneling bacteria, are the main factors causing the deconstruction in most 
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waterlogged archaeological wood (Björdal et al. 1999, Björdal 2012, Blanchette 2000). But 
bacterial decay is considered to be relatively slow in comparison to fungal ones (Klaassen 2014), 
explaining most of well-preserved archaeological wood was excavated in waterlogged conditions 
where fungal decays were suppressed, e.g. famous warships Mary Rose (Sandstrom et al. 2005) 
and Vasa (Hocker 2006). However, when the climate conditions are favorable to wood decay fungi, 
the decomposition would be much more rapid and detrimental, probably causing the absence of 
wooden findings in the tombs located in semiarid/semihumid regions. This might be one reason 
explaining the lack of studies on fungal decay in archaeological wood in northern China. Three 
main types of wood fungal decay are commonly recognized as brown rot, white rot and soft rot, 
each with its unique microscopic morphological characteristics (Schwarze et al. 2007). Wood 
fungal decay has also been studied by various chemical analytical methods, e.g. Fourier transform 
infrared spectroscopy (Gelbrich et al. 2012, Pandey et al. 2003), X-ray photoelectron spectroscopy 
(Pandey et al. 2003, Xu et al. 2013), Py-GC/MS (Rıo et al. 2002, Rıo et al. 2002, Vinciguerra  
et al. 2007) and thermogravimetry (Romagnoli et al. 2018), to acquire different aspects of chemical 
features. Generally speaking, the degradation of archaeological wood in aerated environments is 
more complex than that from anoxic waterlogged environment, which can be caused by all three 
types of fungi and result in poor structure preservation (Tamburini et al. 2017). 

To the best of our knowledge, there has been no reports on a single archaeological unit where 
all three types of wood fungal decays happened, or at least noticed. But here in this paper, such 
materials were acquired from a tomb of Western Han Dynasty (ca. 200-100 B.C.), named as 
Dongshan Han Tomb M6 and excavated in 2018 in Taiyuan City, Shanxi, China. This suggests 
that even within a close distance there might have been variations in micro-environment resulting 
in different fungal decays in archaeological wood. Moreover, wooden artifacts haven’t been paid 
adequate attentions during tomb excavations in northern China due to their poor preservation. 
But in this tomb, Shanxi’s first batch of wooden slips (main writing materials in pre-paper times 
in China) recording ancient medical literatures were found, which adds more significance to 
the understanding of their deterioration causes. Hence, it is a great opportunity to investigate 
the chemical alterations of the archaeological wood with different decay features and further 
understand wood decay in tomb environment of northern China. To acquire the morphological, 
elemental and structural profiles of the wooden slips and the coffin, their current statuses are 
analyzed by microscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared 
spectroscopy (FT-IR), and solid state 13C nuclear magnetic resonance (13C NMR).

MATERIALS AND METHODS

Materials
Dongshan Han Tomb M6 is an accessory noble tomb to a feudatory king’s tomb of Western 

Han Dynasty in Shanxi. It was integrally moved and excavated in laboratory in 2018-2019. 
The wooden coffin boards (identified as Pinus sp., possibly local prevailing Pinus tabuliformis 
Carr.) showed two types of deterioration similar to brown-rot and white-rot decays respectively 
(confirmed in the microscopic results). One type was easily broken into blocks in dark brown color 
(Fig. 1a) while the other was more fibrous with pale yellow color inside (Fig. 1b) and possibly 
related to white pocket rot phenomenon (Blanchette 1980, Otjen et al. 1982). Both types of 
decayed wood from the same cover board of the coffin were sampled. Soft-rot decay was noticed 
on the wooden slips (Fig. 1c, identified as possibly Picea sp.) in dark color located at the bottom 
of the tomb and closed to the foot end, which was also selected as samples. Sound sapwood  
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of Pinus sp. was used as reference in chemical analysis because sapwood within the family 
Pinaceae is basically the same with respect to the main constituents while additional components 
in heartwood may vary. 

Fig. 1: Two types of decayed wood of coffin (a, b) and wooden slips (c).

Observation under microscope
In the typical protocol of wood microscopic sections, the samples were first hydrated by 

soaking in distilled water and then immersed in melted polyethylene glycol (PEG 4000) at 60°C 
overnight. For brittle samples, they were infiltrated by n-butyl methacrylate with 1% AIBN 
(2,2-azobisisobutyronitrile) and heated at 60°C overnight, resulting in cured resin. Thereafter, 
the embedded wood samples were sectioned into 10-20 μm using Thermo Scientific HM  
450 microtome. The sections were mounted in water or neutral resin medium, inspected under 
optical microscope (Leica DM4500P). For microscopic sections with typical white rot features, 
Safranine and Astra blue were used to differentiate the de-lignified areas (Schwarze et al. 1998, 
Srebotnik et al. 1994). The wood section was first stained by Safranine (1% in ethanol) for 3 min, 
then by Astra blue (1% water solution) for 10 seconds, and finally washed by deionized water. 
Also, scanning electron microscope (SEM, Hitachi TM3030) was used to observe the samples 
under low vacuum mode with 15kV working voltage when optical microscope failed to reveal 
the necessary features due to magnification limits. The sample’s section was prepared by a brittle 
rupture so that no physical friction might cause unexpected alteration in the appearance.

FT-IR analysis 
Chemical compositions of grinded wood samples were determined by attenuated total 

reflectance - Fourier transform infrared spectroscopy (Thermo Fisher Nicolet IS50) with a range 
from 4000 cm-1 to 400 cm-1. The FT-IR spectra were analyzed by Peakfit v4.12 software for 
deconvolution.

XPS analysis
The grinded wood samples were tested by X-ray photoelectron spectrometer (AXIS Supra 

from Kratos Analytical Ltd.) using mono Al source (150 W) with a minimum analyzed area of 
15 μm × 15 μm to acquire the oxidation states of the remaining components. For acquiring survey 
spectra, the pass energy was 160 eV, energy steps 1.000 eV and total acquiring time 55.550 s  
(50.0 ms x 1 x 1111). For C 1 s spectra, the pass energy was 40 eV, energy steps 0.100 eV and total 
acquiring time 40.200 s (200.0 ms x 1 x 201). The XPS spectra were analyzed by CASAXPS 
software for deconvolution.

Solid state CP/MAS 13C NMR spectroscopy
The CP/MAS 13C NMR spectra of grinded wood samples were obtained using 400 MHz 

WB Solid-State NMR Spectrometer (Bruker AVANCE III) equipped with WVT 4 mm cross 
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polarization and magic angle spinning (CP/MAS) double resonance probe head. The detailed 
testing parameters were selected according to the literature (Popescu et al. 2009).

PH measurement
The pH values of the samples were measured by METTLER TOLEDO S20 SevenEasy. 

Prior to the measurement, the pH-meter was calibrated by standard solutions of potassium 
hydrogen phthalate (pH = 4.01), phosphate buffer (pH = 6.86) and borate buffer (pH = 9.18). The 
wood powder suspension was prepared by mixing 1 g of the sample with 100 ml distilled water, 
heating at 50°C for 1 h and cooling down to room temperature. The soil suspension was prepared 
by mixing 10 g soil and 10 ml distilled water. The measurements of each kind were taken on three 
replicate specimens.

RESULTS

Determination of decay type by microscopy
Three types of decayed wood are shown in Fig. 2., Although hypha presents in the lumen 

and rays (red arrows) and clefts (blue arrows) in the secondary walls (Fig. 2a,c), most of the cell 
wall structures are intact morphologically. These clefts are shuttle-shaped with varied lengths 
longitudinally from approximately 5 to 30 μm (Fig. 2c). Similar clefts were also observed in 
oak wood incubated with brown-rot fungus Laetiporus sulphureus (Schwarze et al. 2007). Under 
cross polarized light, the birefringence of the S3 and S2 layers of secondary walls has completely 
disappeared, indicating most of the crystalline cellulose has been decomposed. Only S1 layers 
in a limited number of cell walls remain weak birefringence. On the basis of selective cellulose 
degradation, clefts and largely retained secondary wall, the wood sample in Fig. 2a,b,c was 
typically deteriorated by brown-rot fungi.

 

Fig. 2: Micrographs of (a) brown-rot coffin wood transection, (b) transection under cross polarized light, 
(c) radial section, (d) white-rot coffin wood transection stained by safranine, (e) transection stained by 
safranine and astra blue, (f) tangential section, (g) transection of wooden slips showing eroded cell walls, 
(e) highly deteriorated part with spores, and (f) eroded cell wall with longitudinal cavities under SEM 
showing soft-rot features. 
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The wood section in Fig. 2d was stained by safranine where all the middle lamella and cell 
corners turned into red, while the porous secondary walls (mainly S2 layers) were less stained. 
After stained by astra blue which only stains cellulose in the absence of lignin (Schwarze et al. 
1998, Srebotnik et al. 1994), the secondary walls turned into blue (in Fig. 2e), suggesting selective 
delignification had taken place in the secondary walls, which is one of the typical degradation 
mode caused by white-rot fungi of the delignification type (Blanchette 2000, Schwarze et al. 
2007). In tangential section (Fig. 2f), separated micro-fibrils in the original micro-fibril angle 
were exposed since lignin had been completely decomposed in S2 layers.

In the wooden slips, the secondary walls were severely eroded, causing the reduction of 
thickness (Fig. 2g,h). Widespread cavities located in secondary wall (Fig. 2i) match the typical 
feature of soft-rot decay (Blanchette 2000, Schwarze et al. 2007). As a matter of fact, various 
microbes in soil, insects as well as abiotic hydrolysis and oxidation could have influenced the decay 
features of the samples. However, it is reasonable to classify them as the corresponding fungal 
decay types because of their pronounced morphological features.

FT-IR results
After confirming the decay types of the samples, it is now possible to compare their chemical 

alteration related to the determined decay types. The FT-IR spectra are shown in Fig. 3.
 

Fig. 3: FT-IR spectra of analyzed wood samples.

The spectrum of the white-rot wooden coffin is most similar to that of sound wood as 
a result of preservation of cellulose demonstrated by a weak but clear absorption at 896 cm-1 

assigned to C-H deformation in cellulose and other strong cellulose-related absorptions such as 
1372 cm-1 (C-H plane deformation in cellulose and hemicellulose) and 1022 cm-1 (mainly C-O 
stretching in cellulose). However, for brown-rot and soft-rot samples, preferential degradation 
of cellulose has caused a complete loss of absorption at 896 cm-1 in FT-IR spectra. Therefore, 
their 1508 cm-1/1022 cm-1 intensity ratios are much higher than those in sound wood and the 
white-rot wood sample. It is hard to interpret the presence of hemicellulose in FT-IR spectra as 
most of its absorptions are the same as cellulose except the absorption at 1730 cm-1 assigned to 
acetyl group from hemicellulose. After deconvolution, the carbonyl-related absorptions become 
clearer (Fig. 4). The absence of absorption at 1730 cm-1 in all spectra of decayed wood samples 
indicates a complete loss of hemicellulose as it is considered to be degraded in the early stage of all 
types of fungal decays (Eriksson et al. 1990). Interestingly, new peaks appear at 1757-1749 cm-1 

 and 1705-1701 cm-1 in both white-rot and brown-rot samples, which suggests they are probably 
assigned to similar molecular structures from degradation. As the relative intensities of carboxylic 
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group absorptions to that of aromatic ring absorption from lignin (around 1600 cm-1) are 
comparable in both Fig. 4b and Fig. 4c, the newly formed carboxylic groups should be resulted 
from the oxidation of lignin rather than cellulose. Brown-rot fungi, however, can alter the 
structure of lignin to a very limited extent and only demethylation shall presents (Eriksson et al. 
1990, Ohkoshi et al. 1999). Also, these two newly formed carbonyl absorptions were not observed 
in the FT-IR studies of artificially decayed wood inoculated with brown-rot and white-rot fungi 
(Durmaz et al. 2016, Li et al. 2011, Pandey et al. 2003, Rudakiya et al. 2019, Xu et al. 2013). 
Therefore, the formation of new carboxylic acids at 1705-1701 cm-1 and 1757-1749 cm-1 requires 
more information, possibly related to the specific burial environment, to be explained. 

 

Fig. 4: Deconvolution of FT-IR spectra concerning carbonyl groups.

More proportions of peak 4 in Fig. 4b than those in Fig. 4c may be the result of previous 
delignification by white-rot fungi and it making the remaining lignin more accessible and 
reactive to the degradation factors. As for the spectrum of the soft-rot sample in Fig. 4d, there 
is no absorption bands at around 1701 cm-1 and 1749 cm-1. But it is doubtful that the absence 
of these bands would be attributed to very limited oxidation of lignin. The absorption at  
1508 cm-1 decreased dramatically and the band at around 1590-1603 cm-1 has shifted to  
1579 cm-1, suggesting the decomposition or structural alteration of lignin. Additionally, the 
band at 1372 cm-1 normally assigned to C-H plane deformation in cellulose and hemicellulose 
increases and shifts to 1387 cm-1. These two increased absorptions at 1579 cm-1 and 1387 cm-1 
are consistent to asymmetric and symmetric stretching vibrations of carboxylate groups. Thus, 
XPS and solid state 13C NMR were used to confirm the presence of carboxylate and further 
analyzed the degradation outcomes.

Solid state CP/MAS 13C NMR results
From the CP/MAS 13C NMR spectra in Fig. 5 and the main assignments of the signals 

(Melkior et al. 2017, also listed in Tab. 1), similar conclusions can be drawn as the FT-IR results 
with respect to the wood constituents. For sound wood, the holocellulose-related signals are 
much stronger than lignin-related ones. Therefore, the spectrum of the delignified white-rot 
sample was barely altered compared to that of sound wood except the absence of signal 15 related  
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to hemicellulose and the decrease of signal 2 and 10 related to lignin. All the strong signals from 
7 to 12 in the spectrum of white-rot sample shows the high content of cellulose and the signal  
8 assigned to crystalline cellulose suggests the well-preserved cellulose and its crystalline structure. 
The amorphous cellulose, however, seems to be degraded, which is judged by the relative height 
of signal 8 to 9 compared to that of the sound wood. Differently, lignin-originated signals from 
2 to 6 and 14 are much stronger and cellulose-originated signals are weaker in the spectra of the 
brown-rot sample and the soft-rot sample. The crystalline cellulose in the brown-rot and soft-rot 
samples was progressively degraded by fungi as the signal 8 dramatically decreased. In addition, 
the pronounced signal 1 referring to carboxyl groups in the spectrum of the soft-rot sample 
confirms the presence of carboxylate salts as speculated from the FT-IR results.

 

Fig. 5: CP/MAS 13C NMR spectra of (a) sound wood, (b)the white-rot sample, (c)the brown-rot sample, 
and (d) the soft-rot sample.

Tab. 1: Main assignments of CP/MAS 13C NMR spectra of the samples.

Signal number Chemical shift (ppm) Main assignments
1 171.5 Acetyl groups in hemicellulose
2 147.3 G3, G4 in lignin
3 132.8 Non-esterified G1 in lignin
4 129.1 Esterified G1 in lignin
5 123.4 G6 in lignin
6 113.3 G5, G2 in lignin
7 104.6 C1 in cellulose
8 88.8 C4 in crystalline cellulose
9 83.6 C4 in amorphous cellulose
10 74.7 Cα in lignin; C2, C3, C5 in holocellulose
11 72.1 C2, C3, C5 in holocellulose
12 65.1 C6 in holocellulose
13 62.2 Cγ in lignin
14 56.1 OCH3 in lignin
15 21.0 Acetyl groups in hemicellulose

(G refers to guaiacyl, aromatic unit with only one methoxyl. G1- G6 refer to C atoms in guaiacyl ring where
G1 is the one bonded to akyl side chain and Cα- Cγ refer to those in akyl side chain.)



764

WOOD RESEARCH

XPS results
To further analyze the oxidative status of the wood components, XPS analysis were used. 

The quantified elemental data are shown in Tab. 2, and the XPS scans of C 1s region are shown 
in Fig. 6. The assignment of deconvoluted peaks C 1s for lignocellulosic materials corresponding 
to four types of carbon atoms (C1-C4) is well established (Kamdem et al. 2001, Liu et al. 1998, 
Nzokou et al. 2010) and listed in Tab. 3. Due to decomposition or losses of hemicellulose and 
cellulose, all the samples show decrease in O/C ratios in Tab. 2.

Fig. 6: XPS scan of C 1s region.

Tab. 2: Quantified XPS data of the samples.

Sample C O N Si Ca O/C ratio
Sound wood 65.67 34.33 / / / 0.523
White-rot wooden coffin  71.78 26.48 0.50 0.41 0.84 0.369
Brown-rot wooden coffin 79.90 18.13 0.70 0.49 0.77 0.227
Soft-rot wooden slips 67.24 26.53 1.99 1.74 2.50 0.395

Tab. 3: Peak assignment of C 1s region of the samples.

Peak Binding energy (eV) Corresponding chemical bond
C1 284.8 C-C or C-H 
C2 286.3-286.6 C-O
C3 287.4-288.0 C=O or O-C-O 
C3* 288.3 O=C-O-

C4 288.8-289.2 O=C-OR
(C3*only appears in the results of wooden slips).
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For white-rot wooden coffin, the selective delignification and the remaining cellulose 
contributed to the relatively higher O/C ratio and larger area of peak C2 in Fig. 6b compared 
to the brown-rot type. The O/C ratio and peak C2 in Fig. 6c of the brown-rot sample are 
unsurprisingly the lowest since most of the carbohydrates (both cellulose and hemicellulose) 
were degraded, which is consistent to FT-IR results and NMR results. The O/C ratio of soft-rot 
sample is the highest among the decayed types. However, from the FT-IR and NMR results, 
cellulose in the soft-rot sample has been decomposed to a large extent. The main reason of the 
increased O/C ratio would be attributed to further oxidation of lignin, which is also demonstrated 
by larger peak area of C3 in Fig. 6d. 

Moreover, the peak C4 representing carboxyl groups cannot be detected in XPS results of 
the soft-rot sample in Fig. 6d, which is consistent to the absence of absorptions over 1700 cm-1 in 
FT-IR spectrum. Both XPS and FT-IR results demonstrate the absence of carboxylic acids while 
the binding energy of peak C3 in Fig. 6d shifted from normally 288.0 eV (or lower) to 288.3 eV, 
consistent with the binding energy of carboxylate salts (Hammond et al. 1981). Hence, all the 
carboxylic acids in the wooden slips turned into salts, indicating a unique preservation condition 
that neutralized the newly formed acids. These salts were probably formed from the CaCO3 in 
the local loess based on higher content of calcium in Tab. 2 with no other metal detected. In 
addition, higher content of nitrogen (Tab. 2s) in the wooden slips might as well favor the growth 
of fungi and enzyme production, which is possibly resulted from its lower position closed to the 
completely rotted body of the tomb.

DISCUSSION

One of the unsolved problems concerning deterioration of archaeological wood buried 
underground is to what extent it was caused by biochemical processes and abiotic chemical 
reactions. Presumably, no wood can be continuously degraded by fungi for approximately 
2000 years and still preserved. The fungal decay processes were likely to happen during the 
first few years after the burial or after certain incident such as the excavation when the tomb’s 
environmental conditions dramatically changed. This assumption allows us to further understand 
the difference between the fungal decay features and abiotic decay ones. For instance, cellulose, 
especially crystalline part, was largely preserved in the white-rot sample, suggesting abiotic 
hydrolysis of crystalline cellulose was extremely limited in this tomb environment. Also, cellulose 
in archaeological wood without evident microbial decay appeared to be well-preserved in  
a previous finding from southern China (Zhou et al. 2018). On the contrary, the cellulose in the 
brown-rot sample was largely degraded and mainly lignin remains. From the above results, the 
analyzed samples generally fit the fungal decay features morphologically and chemically. But the 
carboxylic acids in both brown-rot and white-rot samples and the carboxylate salts in the soft-rot 
sample were not observed in previous research on wood fungal decay (Durmaz et al. 2016, Li  
et al. 2011, Pandey et al. 2003, Rudakiya et al. 2019, Xu et al. 2013). The presence of fungal 
decays suggests the environment in the tomb was oxic, or at least meets the requirement of aerobic 
fungi. Therefore, a continuous oxidation of lignin probably caused the accumulation of carboxylic 
acids in the samples. 

The conversion from carboxylate acid to its salt form was, of course, directly determined 
by the pH values of the sample and its surroundings. The white-rot and brown-rot samples are 
both acidic (pH 4.67 and pH 6.02 respectively), while the soft-rot sample is slightly alkaline  
(pH 7.26), which is also indicated from their chemical profiles. Moreover, only the acids in the 
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soft-rot sample were evidently neutralized by CaCO3 from loess, while those in the other samples 
were not. The brown-rot and white-rot samples were collected from the cover board of the 
coffin, while the soft-rot sample was located at the very bottom of the coffin. Thus, one possible 
explanation is that the groundwater level did not reach the top of the coffin but sometimes 
exceeded the bottom because water provided the necessary medium for ion exchange. The fact 
that soft-rot requires very little oxygen and prefers high moisture content (Nelson et al. 1995) 
also supports this hypothesis. Additionally, Brown-rot fungi and white-rot fungi reach optimum 
growth at pH values of 5-6, the total growth range between 2.5 to 9, while soft-rot fungi tolerant 
alkaline substrates at pH values up to 11 (Zabel et al. 1992). As the pH value of the soil in the 
tomb is 8.33 due to the presence of CaCO3 in loess, the pH conditions do not actually favor the 
growth of fungi, especially where ion exchange was more frequent. Although wood itself is acidic 
and fungi are capable of excreting acids to adjust the pH value of their surroundings to their own 
requirements (Unger et al. 2001), the wooden slips lying at the bottom of the tomb was still more 
suitable for soft-rot fungi. Therefore, the presence of three different types of fungal decay in the 
same tomb and their chemical features are comprehensively influenced by the surrounding pH 
values, the groundwater levels, oxygen availability, etc. 

From the perspective of conservation of artifacts, relative high contents of carboxylic acids 
or carboxylate salts should be taken into consideration when selecting conservation methods for 
fungal decayed the wooden artifacts. 

CONCLUSIONS

The overall morphological and chemical alterations of the samples decayed by brown-rot, 
white-rot and soft-rot respectively are consistent with the features reported in previous work. 
However, the extensive oxidation of lignin and formation of carboxylic acids or carboxylate 
salts in these samples are the major points that distinguish them from other fungal decay 
cases. Moreover, various factors including CaCO3 from local loess, groundwater level, oxygen 
availability, etc., might result in the different fungal decay types and special chemical features 
(e.g. accumulation of carboxylic acids and carboxylate salts) occurred in the wood of this tomb 
from northern China. 
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