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ABSTRACT

Wood is a natural composite material with a complex structure. Its mechanical properties 
are mainly due to the cell walls. In order to investigate the relationship between mechanical 
properties and chemical composition of wood cell wall. Nanoindentation and Raman imaging 
were used to characterize the longitudinal mechanical properties and chemical composition 
distribution of wood fibers of three years old fast-growing poplar (Populus×euramericana  
cv. ‘74 /76’) during the growing season at different times. The results were showed that the 
content and distribution of cellulose and lignin are closely related to the mechanical properties of 
wood fiber cell walls, especially the cellulose for the longitudinal elastic modulus and the lignin 
for the hardness of cell walls. It was also demonstrated that the longitudinal elastic modulus 
and hardness of the secondary wall 2 layer (S2) were strongly correlated to the micro fibril angle 
(MFA) and crystallinity of cellulose during the active phase.

KEYWORDS: Mechanical properties, chemical composition, wood cell wall, growing season.

INTRODUCTION

The most important characteristic of wood is its excellent mechanical performance at 
comparably lower weight in technical application as well as the use of structural material. In 
order to increase our understanding of the mechanical properties of wood, it is crucial to take 
into account its distinct structure of the wood cells. On the microscopic level, there are many 
differences between individual types of cells. Meanwhile, the cell wall of an individual cell is 
different from the others. A wood cell wall is built-up of layers which differ in their chemical 
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composition and their structure. Since the S2 layer is the thickest wall layer in wood cell walls, 
and the most important structural feature of the layer being variable in the MFA and crystallinity, 
research efforts concentrate on this cell wall region. Nanoindentation, a method of hardness 
and elastic modulus testing at the micrometer level or even at the nanometer scale, has been 
increasingly applied in a variety of studies on wood, bamboo and other cellulosic fibers (Gindl 
et al. 2002, Wu et al. 2010, Yu et al. 2011, Wang et al. 2012). The nanoindentation was first 
introduced in the field of wood science by Wimmer and Lucas (1997a, 1997b) to estimate the 
mechanical properties of the secondary wall, the cell corner (CC) and the compound middle 
lamella (CML) of spruce tracheids. Subsequent investigations were conducted by focused on 
MFA and lignifications (Gindl et al. 2004) related to longitudinal hardness and elastic modulus 
of the secondary wall of softwood tracheids. Many applications for nanoindentation in the field 
of wood research have been demonstrated by recent publications, such as mechanical properties 
of wood flooring paint films (Jiang et al. 2006), bonding interface of wood-adhesive (Konnerth 
and Gindl 2006, 2008, Konnerth et al. 2007, Follrich et al. 2010, Stöckel et al. 2010), wood 
modification, wood fiber polymer composites (Gindl et al. 2006, Lee et al. 2007), creep behavior 
of lyocell fibers (Lee et al. 2007), and thermo-mechanical refining (Xing et al. 2008 ). 

Some wood scientists have investigated the nano-mechanical properties of wood cell walls 
by nanoindentation, but the majority of research was focused on their local softwood species such 
as loblolly pin (Tze et al. 2007, Xing et al. 2009) and spruce (Wimmer et al. 1997, Wimmer and 
Lucas 1997, Gindl et al. 2004). Only a few references were found for nanomechanical properties 
of hardwood by nanoindentation (Wu et al. 2009). Hardwood species have more complex wood 
structure and cellular compositions compared with softwood. About 90-95% of the wood cells in 
softwood are tracheids, however, in hardwood, apart from wood fiber cell; the number of vessel 
elements is also high.

Confocal Raman spectroscopy recently has been found in application as chemical mapping 
and imaging techniques for biological and biomimetic samples (Salzer et al. 2000, Chenery and 
Bowring 2003). Raman scattering involves excitation of a molecule by inelastic scattering with  
a photon (from a laser light source) (Schrader 1995) and depends on changes in the polarizability 
of functional groups due to molecular vibration. Therefore, Raman spectroscopy can provide 
complementary information about the molecular vibrations. This method has developed as 
important tool in plant cell wall research (Atalla and Agarwal 1985, Stewart 1996, Himmelsbach 
et al. 1999, McCann et al. 2001, Morris et al. 2003), as it was allowed to acquire the information 
about the molecular structure and composition of individual features of plant cells. In combination 
with microscopy, the advantage of Raman spectroscopy is to obtain a higher spatial resolution on 
aqueous, thicker samples 

In this study, confocal Raman microscopy and nanoindentation were used to characterize 
the in situ distribution of chemical components and mechanical properties of wood fiber cell 
walls in fast-growing poplar (Populus×euram ericana cv. ‘74 /76’) during the growing season. The 
dynamic relationship between mechanical properties and chemical components distribution of the 
same cell walls were elucidated. The aim of this study was to discover the dynamic microscopic 
correlation between structure and performance of cell, and further for providing strong biological 
basis information in controlling and enhancing the macro-mechanical properties of wood.
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MATERIAL AND METHODS   

Plant material and preparation
Healthy plants of fast-growing 3-year-old Populus×euramericana cv. ‘74/76’ grown in  

a plantation in Beijing’s Changping district with the same diameter at breast height were chosen 
and marked. Plant materials were taken 1.3 m above the ground root level and sampled once 
a month from May to October. On each occasion, small cubic blocks (about 10 ×10 × 10 mm) 
containing phloem, cambium, and xylem cells were immediately immersed in fixative formalin–
acetic acid–alcohol (FAA) for preserving the material. Upon returning to the laboratory, they 
were placed in the same fresh fixative under a slight vacuum for 30 min. The pieces were fixed in 
fresh fixative and preserved at 4°C. The sample block was cut into two halves axially. One half 
was used for Raman imaging, and the other for nanoindentation testing.

Raman imaging
Without any further sample preparation, 10-μm-thick cross sections including phloem, 

cambium were cut on a sliding microtome (Leica, RM2000R), and then repeatedly washed with 
distilled water. Slices were placed on a glass slide with a water drop, and sealed with a cover slip 
to observe the last formed wood fibers closest to the cambium.

A confocal Raman microscope (XploRA, Horiba Jobin Yvon, France) equipped with a piezo 
scanner and a microscopic objective from Olympus (100×, NA=1.25) was used to acquired the 
spectra. A linear polarized green laser (λ=532 nm) was focused with a diffraction-limited spot 
size (0.61 λ/NA). The Raman light was detected by an air-cooled, back-illuminated spectroscopic 
CCD (ANDOR) behind a grating (1200 g.mm-1) spectrograph (ACTON) with a resolution of 
6 cm-1. The scanning data was acquired by a scanning probe with a step of 0.4 μm. The time of 
a single point acquisition was 6S, a slit width was 100 μm and a confocal hole size was 300 μm.

In situ imaging nanoindentation testing
The procedure of sample preparation for nanoindentation was similar to that proposed by 

Wimmer et al. (1997). In brief, the sample sticks were embedded in Spur resin and cured in  
a plastic mold. After curing, the cross-section of samples was cut with an ultra microtome 
equipped with a diamond knife to obtain a very smooth surface for indenting. The Triboindenter 
(Hysitron Incorporation, USA) with a radius less than 100 nm diamond indenter was selected 
for indenting. The target peak load and loading-unloading rate was 250 μN and 50 μN.s-1, 
respectively. The hold time at peak load was 6 s (Yu et al. 2011). 

Elastic punch theory states that the elastic modulus of materials and hardness can be inferred 
from load-displacement curves of nanoindentation. According to the method of Oliver and Pharr 
(1992), the unloading segment can be fitted very well with a power-law function, from which 
the initial slope of the unloading curve, namely elastic contact hardness (H), can be determined. 
Based on H, the reduced elastic modulus Er can also be obtained. Then the MOE and hardness 
of materials can be calculated from the following Eq. 1:

 
    (1)

 (2)
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where: P -  peak load,
 A - which can be calculated from an empirical formula, is the projected area at peak
       load, 
 Er  - called the reduced elastic modulus, 
 Ei and vi  - respectively the elastic modulus and Poisson ratio of the tips.
 
For diamond tips, Ei is 1141 GPa, and vi is 0.07. E and v are, respectively, the elastic modulus 

and Poisson ratio of samples. It should be pointed out that the modulus E and Er are almost 
identical for soft materials like wood, which eliminated the need to obtain the Poisson ratio of 
the cell wall of wood fibers.

The thickness of wood fiber cell wall is only 2-6 μm. Although the nanoindentation 
apparatus has high accuracy (indentation depth resolution can reach 0.1 nm), the precision of x-y 
positioning platform is 1.5 μm/inch. If indenter moves 2.54 cm in a horizontal direction, it will 
generate the error of 0.1 nm in cell wall. So it cannot fully guarantee each indentation can be very 
accurate in cell walls, the creasing points need to be determined, to ensure the effectiveness of the 
indentations, as shown in Fig. 1.

        

                           
              a                                                         b
Fig. 1: a. The invalid indentation points. b. The effective indentation points.

The in situ images of nanoindentation points of wood fiber cell wall during the growing 
season were shown in Fig. 2. Trees were sampled on the 15th of each month.

          
                   a. May                               b. July                          c. August

        

      
                                    d. September                          e. October

Fig. 2: The in situ images of nanoindentation points of wood fiber cell wall in S2 in different growth phase.  
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MFA and crystallinity 
A powder X-ray diffractometer (X’Pert Pro, Panalytical, USA) was used to measure the 

MFA and crystallinity. The specimens were 10(L) ×5(T) mm with a thickness of 0.5(R) mm. 
The X-ray diffractometer was operated at a voltage of 40 Kv with a current density of 40 mA. The 
radiation source was a CuKa (λ= 0.154nm). The scanning range was from 2θ=5° to 40° at a scan 
speed of 0.084°.s-1 (Yu et al. 2011). The data was collected using a continuous mode with angular 
intervals of 0.084°. The obtained scanning intensity curve data was imported into the Origin data 
processing software, and the MFA was obtained by Gaussian function fitting. The mean MFA 
was determined according to the method developed by Cave (1966). The same specimens were 
ground into powder for evaluate the Crystallinity as crystallinity index and determined from the 
ratio of the intensity of the sample. The formula for crystallinity index, CrI, is as follows:

CrI (%) =(I002 - Iam) /I002 × 100

where: I002  -  the maximum intensity of 002 diffraction peak at 2θ=20.002°, 
 Iam  -  the minimum intensity of a peak near 2θ=18.000°.

RESULTS 

Distribution of chemical composition of cell wall layers
The Raman bands used for analysis and their assignment to lignin (L) and cellulose (C) were 

shown in Tab. 1 (Gierlinger et al. 2006). Two-dimensional chemical images were calculated by 
integrating over wave number ranges (Figs. 3 and 4) in different active phases (May to October). 

Tab. 1: The Raman bands used for analysis and their assignment to lignin (L) and cellulose (C).

Wavenumber (cm-1) Component Assignment
2.897 C CH and CH2 stretching vibration(str.) 
1.601 L Aryl ring str., sym.
1.462 L and C HCH and HOC bending
1.333 C HCC and HCO bending
1096 C, Xyl, and GlcMAn Heavy atom (CC and CO) str.
903 C Heavy atom (CC and CO) str.

The higher cellulose content can be seen in the peak at about 2.897 cm-1 (2.772∼3.045 cm-1), 
dominated by the stretching vibration of CH and CH2 groups (Tab. 1 and Fig. 5 ). The spectra 
were calculated for the different cell wall layers (CC, CML, and S2) of wood fiber cells during 
the active phase by selecting the distinct areas on the chemical images (Fig. 3 and Fig. 5). It can 
be clearly observed from Fig. 3 that the distribution of cellulose in the S2 layer was the strongest, 
indicating that the S2 concentration in the secondary wall is the highest. The weakest cellulose 
Raman signal was in the CC, indicating the lowest concentration of cellulose in this area. There 
is a clear difference in Raman signal intensity of cellulose in the CML. It was probably due to the 
very thin cell walls of the wood fiber, and the Raman spectrometer's lateral resolution was 1 μm. 
Raman signal of cellulose in CML was covered by the stronger signal in the S2 layer, resulting 
in a difference in signal intensity. In addition, the molecular orientation of cellulose molecules in 
different cell layers would also lead to differences in the Raman signal intensity of cellulose. The 
orientation of the microfibril in the S2 layer of the wood fiber cell is mainly parallel to the axis of 
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the cell. The 2.897 cm-1 peak was caused by the C-H stretching vibration of the methylene group 
in the cellulose molecule, and the vibration direction of the C-H bond was perpendicular to the 
direction of the cellulose molecular chain and parallel to the direction of the electric vector of 
the incident light, which could enhance the Raman signal strength. The difference between the 
Raman signal intensity of cellulose in the same layer in Fig. 3 might be caused by the irregular 
surface of the sliced sample in the process of sample preparation.

The S2 layer was observed to have the highest intensity at the peak of 2.897 cm-1 and thus 
higher cellulose concentration than the CC and the CML. The CC was the weakest, indicating 
that the cellulose concentration is the lowest (Fig. 5). Gierlinger (2006) and Zhang (2012) have 
obtained the same results, the S2 layer have the highest cellulose concentration, followed by CML 
and CC. 

It can be seen from the spectra that the strong intensity of lignin content was observed 
around 1.601 cm-1 (1.519-1.712), which can be assigned to the aromatic C=C vibration. The 
spectra were calculated for the different cell wall layers (CC, CML, and S2) of wood fiber cells 
during the active phase by selecting the distinct areas on the chemical images (Fig. 4 and Fig. 5). 

        
            a. May                                     b. July                                    c. August

         
                             d. September                                e. October

Fig. 3: Raman images of a cross section of wood fiber cells (CC, CML, and S2) showing the cellulose 
distribution in different stages (2.772- 3.045 cm-1). (Bar = 2um)

      
               a. May                               b. July                                  c. August

    

         
                             d. September                                e. October

Fig. 4: Raman images of a cross section of wood fiber cells (CC, CML, and S2) showing the lignin 
distribution in different stages (1.519-1.712 cm-1). (Bar = 2um)
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Fig. 5: Raman spectra of S2, CML and CC in different growth stages

In Fig. 4, the CC was discovered to have the strongest Raman signal, indicating that the 
lignin concentration was the highest. The Raman signal intensity of the CML was slightly lower 
than that of CC, because of the thin CML and the lateral resolution of the Raman spectrometer. 
The concentration of lignin in the CML may include multiple cell walls Layers: ML, P, S1 and 
S2. The S2 layer was the weakest, demonstrating that the lignin concentration was the lowest. 
The lignin content was CC > CML > S2, which revealed that the CC had the highest degree of 
lignification, followed by the CML, the lowest was S2. Gierlinger (2006) found the same results 
by the research on lignin distribution of Populus nigra×Populus deltoids. Zhang (2012) showed that 
the lignin distribution was heterogeneous in the study of the Daphne odora Thunb., the highest 
concentration of lignin in CC, the lower concentration of CML, the lowest concentration in S2, 
Consistent with the results of this study.

The spectra of S2, CML and CC in different growth stages (May, July, August, September, 
and October) are shown in Fig. 6. It is observed that the peak at about 2.897 cm-1 of the S2, 



186

WOOD RESEARCH

CML and CC spectrum approximately presented increasing trends from May to October except 
in August. The highest intensity in the peak at about 2.897 cm-1 was in August. The results 
illustrated that the cellulose content in different parts (S2, CML and CC) of the cell wall was on 
the whole increased during the active phase. The change in the peak at 1.600 cm-1 had the same 
trend as at 2.795 cm-1. It also demonstrated that the lignin concentration was roughly raised from 
May to October. 
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Fig. 6: Raman spectra in different cell wall layers during the active phase.

Mechanical properties of cell wall layers
Fig. 7 shows the elastic modulus of S2, CML, and CC measured with nanoindentation.  

It can be seen that the longitudinal elastic modulus of wood fiber cell in different position was 
S2 > CML > CC. The average elastic modulus of S2, CML, and CC were 17-21 GPa, 13-15 
GPa, and 9-12 GPa respectively, with an increasing trend during the active phase. The growth 
rate of elastic modulus from May to October was 23.53%, 15.38%, and 33.33% respectively. If 
the elastic modulus of CC is defined as a unit, then the ratio of CC, CML and S2 is 1:1.33:1.82. 
Statistically significant difference was found with changing growing period according to one-way 
ANOVA (P<0.05).
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Fig. 7: Histogram of elastic modulus in different cell wall layers during the active phase.



187

Vol. 63 (2): 2018

Fig. 8 shows the hardness of S2, CML, and CC measured with nanoindentation. It can be 
seen that the average longitudinal hardness of S2 was 550-660 MPa, with an increasing trend 
during the active phase. The growth rate of S2 hardness from May to October was 20.00%. 
However, the hardness of CC was showed a decreasing tendency from 600 MPa to 520 MPa. 
The hardness drop rate of CC was 15.38% during the active period. The hardness of CML was 
not significantly changed and kept at 530-550 Mpa. In the prophase of active phase in May, the 
longitudinal hardness was CC > CML > S2, however, by the end of active phase in September 
and October was S2 > CML > CC. No statistically significant difference was found with 
changing growing period according to one-way ANOVA (P<0.01). 

 

0

150

300

450

600

750

May Jul. Aug. Sep. Oct.

Sampling Time

H
ar

dn
es

s (
M

pa
)

S2 CML CC

Fig. 8: Histogram of hardness in different cell wall layers during the active phase.

Crystallinity and MFA of cell wall layers
The crystallinity and MFA of the S2 layer during the active phase was measured. It can be 

seen from the Fig. 9 that the crystallinity of S2 layer was 44.49% to 54.97%, with an increasing 
trend from May to October. However, the Micro fibril angle of the S2 layer was showed  
a decreasing tendency from 21.16° to 15.66° (Fig. 10).

         
Fig. 9: Crystallinity of S2 layer during the active 
phase.

Fig. 10: MFA of the S2 layer during the active 
phase.

Linear relationship analysis was made between cellulosic characteristics and the mechanical 
properties of the S2 layer (Tab. 2). 

Tab. 2: Correlation coefficients of cellulose with mechanical properties of secondary cell wall.

ES2 HS2
Cr 0.865* 0.915*

MFA -0.909* -0.917*
Note: * Correlation is significant at the 0.05 level (2-tailed)
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According to the Pearson’s analysis, the results showed that the degree of crystallinity of 
cellulose had a highly significant positive correlation with the longitudinal elastic modulus and 
hardness. However, the MFA of cellulose had a highly significant negative correlation with the 
elastic modulus and hardness of the S2 layer. The same conclusion has been confirmed by many 
researches (Gindl et al. 2004, Cave 1969, Page et al. 1977, Burgert et al. 2002). 

DISCUSSION

Relationship between mechanical properties and cellulose of cell wall
It was found that the cellulose concentration in different parts of wood fiber cell wall was 

S2> CML> CC in the same period, which had the similar change with the longitudinal elastic 
modulus of wood fiber. In the meantime, it was found that the cellulose concentration of the S2 
layer, the CML and the CC showed a gradually increase tendency during the active period. The 
change trend of longitudinal elastic modulus of the S2 layer was consistent with that of cellulose 
concentration. From the results, it can be inferred that the content and distribution of cellulose 
are closely related to the mechanical properties of cell walls, especially for the longitudinal elastic 
modulus of cell walls. The higher the cellulose concentration is, the larger the longitudinal elastic 
modulus of cell walls is.

MFA has been considered an important factor that determines wood properties such as 
stiffness and strength and it has been shown by Cave (1969) that longitudinal elastic modulus of 
wood is very much dependent on MFA of S2. On the one hand, conventional wisdom indicates 
that as the MFA increases (to a value up to 90); the longitudinal stiffness would decrease (Tze 
et al. 2007). On the other hand, wood bulk density is also strongly related to the mechanical 
properties of wood (Cown et al. 1999, Evans and Ilic 2001). Contrary to hardness data, changes 
in cell-wall structure and composition showed a clear effect on the elastic modulus of S2. With 
increasing MFA and increasing lignin content, the elastic modulus decreased in an s-shaped 
curve. Model calculations show that, due to low Young’s modulus of lignin as compared to the 
cellulose fibrils, an increasing lignin concentration reduces the elastic modulus of the cell wall, 
but this effect was found to be minor compared to the strong influence of MFA (Gindl et al. 
2004).

Relationship between mechanical properties and lignin of cell wall
The results showed that the lignin concentration in different parts of wood fiber cell wall was 

CC> CML> S2 in the same period, which was in contrast to the change of the longitudinal elastic 
modulus, and was consistent with the change of longitudinal hardness in the earlier active stage. 
The lignin concentration in the S2 layer was increased gradually during the active period, which 
was kept in line with the change of the longitudinal elastic modulus and the hardness of the S2 
layer. The degree of lignification in the CC and CML of earlywood was higher than that of the 
latewood during the active period, which was consistent with the change of the hardness in CC 
and CML. From the above results, it can be concluded that the content and distribution of lignin 
are closely related to the mechanical properties of cell walls, especially for the hardness of cell 
wall. The higher the lignin concentration is, the higher the longitudinal hardness of cell wall is.

Wimmer (1997) found that the elastic modulus of CML with high lignin content was 
significantly low compare with that of the secondary cell wall with a lower lignin, they attributed 
this to the almost completely devoid of cellulose in the zone of CML. On the contrary, the minor 
differences between hardness of CML and secondary cell wall, which demonstrated that the 
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hardness was less affected by the lignin content. Gindl (2004) discovered that the lignin content 
was 0.21 g.g-1 of lignified tracheid compared with immature tracheid of 0.10 g.g-1, the elastic 
modulus and hardness were increased by 22% and 26% respectively. Zhang (2011) studied the 
delignification treatment compared with the untreated cell wall, the elastic modulus lost 6.53% 
and the hardness decreased 16.98%, which showed that the lignin content and existence for the 
influence of hardness was larger than that of the elastic modulus.

CONCLUSIONS

Nanoindentation and Raman imaging were used to characterize the longitudinal mechanical 
properties and chemical composition distribution of wood fibers during the active period. The 
relationship between mechanical properties and chemical composition was investigated in this 
study. In short, the following conclusions can be obtained. First, the results of the distribution 
of chemical constituents in different parts of the same stage during the active period showed 
that the concentration of lignin was CC> CML> S2, and the relative concentration of cellulose 
was S2 > CML> CC. The concentration of lignin and cellulose in the S2 layer, CML and CC 
was increased first and then decreased during the whole active period, and the concentration 
of latewood cells was higher than that of the early wood ones. Second, the longitudinal elastic 
modulus in different position was S2 > CML > CC and with an increasing trend. The hardness of 
the S2 layer showed an increasing trend and CC was a decreasing trend during the active phase. 
Third, the crystallinity of S2 layer was increased from 44.49% to 54.97%. However, the MFA 
of the S2 layer was showed a decreasing tendency from 21.16° to 15.66°. The longitudinal elastic 
modulus and hardness of the S2 layer are mainly dependent on MFA and crystallinity of cellulose. 
Finally, from the results, it can be concluded that the content and distribution of cellulose and 
lignin are closely related to the mechanical properties of cell walls, especially cellulose for the 
longitudinal elastic modulus and lignin for the hardness of cell walls. 
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