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ABSTRACT 
 

This paper compares two concepts of composite timber concrete ceilings and their 
uncoupled alternatives based on a parametric study by comparing the final deflections           
of individual variants and at the same time considering according to the ultimate limit state.    
It includes a comparison of coupled and uncoupled variants while maintaining the same 
boundary conditions as the load, the thickness of the ceiling structure and the load width.     
By considering other factors, we can achieve more optimal variant, thanks to more accurate 
consideration of the required boundary conditions such as the complexity of installation        
or fire resistance. The purpose of this paper is to simplify the optimal selection of the ceiling 
structure based on the suitability of the supporting structure. 
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INTRODUCTION 
 

At present, the accent is on the usage of materials and structures that leave as little carbon 
footprint as is possible. As is widely known, wood is the most suitable basic construction 
material. As part of wood-based material is CLT too. CLT is relatively new material, it was 
developed just at the end of 20th century (Brandner et al. 2016). It is commonly applied as 
structure member as ceilings or walls in multi storey buildings or structures with requires 
longer span like congress halls, galleries, or schools (Ceccotti 2002). High material resistance 
compared to the weight is main benefit in elements like CLT panels. Each segment consists of 
three-, five- to seven- layers of lamellas. Each layer is applied perpendicular to layer before 
(Aicher et al. 2001). It is rule, that outer layers must be in the same way as main load capacity 
(Bajzecerova et al. 2018). In some cases, CLT panels as ceilings may be insufficient. To use 
most of the potential of these structures, it is necessary to apply shear connectors. It is well 
known that by applying a coupling, the ceilings can be more effective by coupling appropriate 
materials and components, e.g., timber beam with concrete deck (Surovec and 
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Composite slab timber-concrete ceiling 
Solid timber panel from cross laminated timber (CLT) is used as part of a coupled cross-

section and provides a support function and further replaces the need to use formwork      
(Fig. 3). The study uses panels intended for application to ceiling structures, which means that 
the outer layers of the CLT panel are in the longer direction of the slab and at the same time in 
its direction with higher load-bearing capacity. The thickness and number of layers varies 
based on the needs of the study. Since it is a slab element, the load width refers to 1m. As it is 
in previous variant, load width and effective width are equal. Concrete of the same strength 
class C20/25 of constant thickness with one row of reinforcement is used as another material 
in the composite ceiling.  
 

 
Fig. 3: Cross-section of composite slab timber-concrete ceiling. 
 
Non-composite variants of timber-concrete ceiling 

For verification efficiency of coupling were created non-composite variants. To verify  
the effectiveness of the coupling, uncoupled variants were created. In both cases, the coupling 
by self-tapping screws were not applied, the following boundary conditions were maintained 
as in the previous variants. 

 
Test set-up 

The analytical study is prepared in the MS Excel program. Algorithm consists of different 
material parameters and geometric parameters. In the calculation is necessary to account 
differences between used cross-sections. Used variants have equal values of surface loads 
consisting of imposed load (2 kN.m-1), and predefined loads as load from load-bearing and 
non-load-bearing walls (2,78 kN.m-1), and load of layers of floor (1,2 kN.m-1) expect for self-
weight load. These values changes based on the change in the thickness and density of used 
wood-based material (EN 1991-1-1, 2002). In first step, the γ-method is necessary to apply in 
the variant with CLT panel (EN 1995-1-1, 2004). Based on this method, it is possible to take 
into the account the efficiency of individual layers and express the corresponding moment of 
inertia of the effective cross-section of the CLT segment. Subsequently, the method of 
idealized cross-section is applied, which is based on the creation of an idealized cross-section 
originally consisting of several materials. This result can be achieved after calculating with 
the partial coefficient, it is used to obtain effective cross-sectional characteristics specified in 
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the EN 1995-1-1 Annex B. Method is valid for combination as for CLT and concrete as 
timber-beam concrete structure. 

The sample is assessed as part of the analysis in the first step. The cross-section is 
assessed for the ultimate limit state (ULS) for various stress methods along the height of 
the cross-section. The instant deflection is count for serviceability limit state (SLS). 
In the next step is count is offset further for SLS and ULS at the end of life are evaluated 
(EN 1991-1-1, 2002). 
 

RESULTS AND DISCUSSION 
 

Comparison of efficiency of support systems 
Numbers of factors affect the effectiveness of a design e.g., type of material and 

geometrical parameters, quantity and type of shear connectors, load width and effective span 
of the ceiling structure (Dias et al. 2015). 

Deflection is one of the factors that determines the ability to use. Exceeding the values 
does not say that the structure collapses, it expresses comfort and the possibility of use. 
Excessive curvature of roof can cause some devices to malfunction (Ataei et al. 2019). 

Since deflection also corresponds to the time. Due to the effect of time, the joints are 
loosened, and these results are an increase in the already instant deflection and thus the final 
deflection created (Hassanieh et al. 2017, Kanócz and Bajzecerová 2012, Khorsandnia et al. 
2015). By comparing instant deflection in Figs. 4-7 and final deflection in Figs. 8-11 it can be 
seen increase in deformation. This has the effect of reducing the scope of the use of span. 

Also, it is known that the thickness of the structure affects the final deflection of the 
structure. The effect of improving parameters of ceiling can be seen gradually in Figs. 4-7. 
It is shown that the coupled slab ceiling is more effective and can be applied to a range of 
approximately 9.5 m. On the other hand, a beam-coupled ceiling can only be applied up to     
a span of approximately 6.5 m with a load width of 1 m. Coupled variants are more efficient 
as uncoupled variants and is possible to overcome a longer span. 

 

 
Fig. 4: Comparison of instant deflection depending on thickness of noncoupled beam-
concrete and length of span. 
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Fig. 5: Comparison of instant deflection depending on thickness of coupled beam-concrete 
and length of span. 
 

 
Fig. 6: Comparison of instant deflection depending on thickness of noncoupled CPT-concrete 
and length of span. 
 

 
Fig. 7: Comparison of instant deflection depending on thickness of coupled CLT-concrete and 
length of span. 
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Fig. 8: Comparison of final deflection depending on thickness of noncoupled beam-concrete 
and length of span. 
 

 
Fig. 9: Comparison of final deflection depending on thickness of coupled bean-concrete and 
length of span. 
 

 
Fig. 10: Comparison of final deflection depending on thickness of noncoupled CLT-concrete 
and length of span. 
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Fig. 11: Comparison of final deflection depending on thickness of coupled CLT-concrete and 
length of span. 
 

It is necessary to consider assessments at the ultimate limit state as well as usability. As it 
is obviously presented in Figs. 13 and 14, there may be case where the conditions are fulfilled 
only for SLS (EN 1991-1-1, 2002). In Fig. 12 are presented distribution of bending stresses 
cross the height of cross-section. 

 
Fig. 12: Cross-section of CLT and distribution of bending stresses. 

 
Similar cross-section of 240 mm thickness was taken for all variants in the comparison. 
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timber-concrete beam variant. Requirement for limit state of final decline is fulfilled. It is 
clear, that coupling elements are significantly improving segment according to Tab. 1. 

 
Tab. 1: Evaluation of Assessment at timber-concrete variants with 5 m span. 

Coupled timber-concrete ceiling Non-coupled timber-concrete ceiling 

Cross-
section 

ULS - end of service life 
SLS - end 
of service 

life 

Cross-
section 

ULS- end of service life 
SLS - end 
of service 

life 

HT WT 
σ1.u/ 
fcd 

σ2M/ fmd+ 

σ2.l/ ft.0.d 
τ2max/ 

fvd 
wfin/ wlim HT WT 

σ1.u/ 
fcd 

σ2M/ fmd+ 

σ2.l/ ft.0.d 
τ2max/ 

fvd 
wfin/ wlim 

200 120 0.396 1.578 0.500 0.916 200 120 0.843 2.887 0.694 3.705 
220 120 0.344 1.368 0.466 0.756 220 120 0.659 2.481 0.656 2.898 
240 120 0.302 1.199 0.437 0.632 240 120 0.523 2.146 0.618 2.300 
260 120 0.268 1.059 0.411 0.535 260 120 0.420 1.868 0.583 1.850 
280 120 0.240 0.943 0.389 0.456 280 120 0.342 1.637 0.550 1.507 

 
Values of stresses at the upper edge of concrete part of section of different CLT variants 

are slightly similar to each other (Tab. 2). On the other hand, these differences are not so 
obvious as in timber beam variants. Coupled CLT-concrete slab has 7.12% capacity instead of 
13% by noncoupled CLT-concrete slab. Strain at lower part of timber segment is decisive 
factor. Requirements for ULS and SLS in case of CLT variants are satisfied. Decrease in 
values is not so observable as in case of beam variants. Coupled variant has decrease of values 
5.7%. It is due to higher efficiency of slabs involved their higher stiffness. 
 
Tab. 2: Evaluation of assessment at CLT-concrete variants with 5 m span. 

Coupled CLT-concrete ceiling Non-coupled CLT-concrete ceiling 
Cross-
section 

ULS - end of service life 
SLS - end of 
service life 

Cross-
section 

ULS - end of service life 
SLS - end of 
service life 

H CLT σ1.u/fcd 
σ2M/ fmd+ 
σ2.l/ ft.0.d 

τ2max/ 
fvd 

wfin/ wlim H CLT 
σ1.u/ 
fcd 

σ2M/ fmd+ 
σ2.l/ ft.0.d 

τ2max/ 
fvd 

wfin/ wlim 

200 0.213 0.478 0.122 0.432 200 0.153 0.600 0.144 0.702 
220 0.162 0.356 0.098 0.310 220 0.101 0.435 0.115 0.464 
240 0.130 0.284 0.085 0.236 240 0.072 0.341 0.098 0.335 
260 0.114 0.259 0.084 0.200 260 0.060 0.306 0.095 0.278 
280 0.101 0.237 0.083 0.171 280 0.050 0.276 0.093 0.234 

 
Tab. 3: Evaluation of assessment at CLT-concrete variants with 8 m span. 

 

Coupled CLT-concrete ceiling Non-coupled CLT-concrete ceiling 

Cross-
section 

ULS - end of service life 
SLS - end of 
service life 

Cross-
section 

ULS - end of service life 
SLS - end 
of service 

life 

H CLT σ1.u/ fcd 
σ2M/ fmd+ 
σ2.l/ ft.0.d 

τ2max/ fvd wfin/ wlim H CLT 
σ1.u/ 
fcd 

σ2M/ 
fmd+ σ2.l/ 

ft.0.d 

τ2max/ 
fvd 

wfin/ wlim 
 

200 0.623 1.196 0.198 1.524 200 0.393 1.531 0.230 2.864 
220 0.494 0.885 0.157 1.107 220 0.259 1.110 0.183 1.895 
240 0.408 0.703 0.134 0.851 240 0.186 0.872 0.157 1.370 
260 0.362 0.644 0.133 0.724 260 0.154 0.782 0.153 1.137 
280 0.325 0.593 0.132 0.622 280 0.129 0.707 0.148 0.957 
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In this comparison were used samples of variants as beam and slab ceilings showed in 
(Tabs. 1 and 2) with the same span of 5 m. CLT variants are not suitable for shorter spans as it 
was presented and have potential for considerably higher span and loads. Longer span would 
be more appropriate for variants consisting of CLT panels. For example (Tab. 3), exceeded 
capacity can be seen in coupled and noncoupled CLT concrete slab with 8 m span. Overall 
fulfilled conditions for SLS and ULS are completed in coupled CLT concrete variant. 
By comparison values of capacity with case of noncoupled variant values are higher by 137% 
and are no more suitable for SLS. These values are 51.9% higher than in coupled variant. 
In case of ULS the decisive stresses capacity is in the lower part of CLT panel. Capacity is 
suitable, but it has higher percentage usage than other assessments. 

It is not only resistance or load-bearing capacity that should be taken in consideration 
during decision-making about the type of ceiling structure (Tab. 4). The design may be 
suitable for these factors, but it is necessary to consider others, e.g., requirement of structure 
thickness of each storey, because the thickness of ceiling can also strongly influence total 
building costs. Advantage of using slab CLT system is not only low thickness and good 
rigidity, but also simplicity of placement technical equipment of buildings, because of 
the absence of protruding beams (Bajzecerová and Kanócz 2017). 

 
Tab. 4: Comparison of variants based on suitability for use (darker color indicates higher 
suitability for use). 

Alternatives Non-coupled 
timber beam 

concrete ceiling 

Coupled timber beam 
concrete ceiling 

Non-coupled 
CLT-concrete 

ceiling 

Coupled CLT-
concrete ceiling 

Parameters 
Length of span         
Thickness of ceiling         
Time of realisation         
Fire resistance         
Price         

 
Level of difficulty in making the ceiling structure is another indicator. It is necessary to 

use formwork while using the beam system. When classic formwork is used, it must be also 
removed afterwards. This aspect remains even in the coupled variant where the application of 
a considerable number of shear connectors are added to the entire assembly process. 
Necessity to install formwork is eliminated while applying the slab system. In terms of 
implementation, it is the simplest and least laborious variant. This system can be made more 
efficient by using shear connectors, but at the expense of laboriousness in laying the self-
tapping screws. 

In fire situation, compared to steel or concrete is timber as material more effective. 
Timber not prone to lose strength after reaching a certain temperature, and neither is explosive 
strub off the surface as it is the habit for the concrete. Charred layer which slows down 
the overheating of the element at outer side of timber protects surface (Makovická 
Osvaldová et al. 2016, Chen et al. 2021). It is important to note, that section does not lose its 
resistance abruptly but continuously (Makovicka Osvaldová 2020).  

During the research of a suitable variant, it is also necessary to consider the financial 
complexity. It is obvious that the cheapest will be the application of the simplest solution - the 
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beam ceiling noncoupled, but it is inefficient way. The usage of CLT panels can make 
construction considerably more expensive, but nevertheless it is possible to realize ceiling 
structures with larger spans. It is also required to consider the necessity of using the shear 
connectors. Price of self-tapping screws is not negligible due to their quantity and quantity of 
additional work. Also, must be account necessity of usage temporary supports while applying 
coupled variants. 
 

CONCLUSIONS 
 

Coupling appears to be an effective way to achieve higher strength of the ceiling 
structure. While comparing the beam variants, it was found that the proposed coupling was 
able to eliminate the stresses to approximately half the values compared to the uncoupled 
variant. The slab variants have been found to be unnecessarily oversized at 5 m spans. Further 
research will need to focus on the use of slimmer boards (Van Thai et al. 2020). It would be 
beneficial to focus on the effectiveness of the coupling, in which case, a higher degree of 
coupling could also be verified. Alternatively, verify other methods of coupling (Kanócz et al. 
2013). Coupling with the aid of screws appears to be a highly laborious alternative and it 
would be appropriate to compare the coupling efficiency also with the variant where the shear 
connectors would be used as a perforated steel strip shear connectors or grooves. 
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