
 

WOOD RESEARCH                                       doi.org/10.37763/wr.1336-4561/67.4.519532 
e-ISSN 2729-8906 
67(4): 2022  519-532 pp.   

 
 

519 
 

 IDENTIFICATION OF THE CELL WALL SYNTHESIS GENES IN BETULA 
PENDULA 

 
SONG CHEN1, XIYANG ZHAO1,2, SU CHEN1 

 

1NORTHEAST FORESTRY UNIVERSITY, CHINA 
2JILIN AGRICULTURAL UNIVERSITY, CHINA 

 
(RECEIVED DECEMBER 2021) 

 
 
ABSTRACT 
 

This study aims to provide information on Betula pendula cell wall synthesis genes 
regarding their potential physiological roles and the molecular mechanism associated. Here we 
identified 46 gene models in 7 gene families that encode cellulose synthase and related enzymes 
of B. pendula, and the transcript abundance of these genes in xylem, root, leaf, and flower tissues 
also be determined. Based on these RNA-seq data, we have identified 8 genes that most likely 
participate in cell wall synthesis, which include 3 cellulose synthase genes and 5 cellulose 
synthase-like genes. In parallel, a gene co-expression network was also constructed based on 
transcriptome sequencing. These analyses will help decipher the genetic information of 
B. pendula cell wall synthesis genes and alter its wood structure on the cellular level. 
 
KEYWORDS: Betula pendula, cell wall, cellulose synthase, RNA-seq, WGCNA, transcription 
factors. 
 

INTRODUCTION 
 

Silver birch (Betula pendula) is a medium-sized deciduous tree that owes its common name 
to the white peeling bark on the trunk. This species is native to Europe and parts of Asia, and 
the range extends into Siberia, China, and southwest Asia in the mountains of northern Turkey, 
the Caucasus, and northern Iran (Hynynen et al. 2010). B. pendula is an ecologically and 
economically important plant species due to its strong tolerance to various climates. Flowering at 
an early age allows B. pendula has a faster succession of generations, which together with rapid 
juvenile development can shorten the breeding cycle. Large-sized logs are produced within 
relatively short periods with proper silvicultural treatment, and the wood characteristics allow 
versatile and valuable uses. In the context of societal evolutions and customer perceptions, B. 
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pendula will certainly play an increasing role in the building and furniture sectors, and among 
non-wood forest products (Dubois et al. 2020). 

The cell periphery of higher plants is usually surrounded by the cell wall. Plant cell walls are 
complex networks of polymers that provide protection and structural properties to the cells 
(Buchanan et al. 2015). The cell wall mainly includes four major chemical polymers: cellulose, 
hemicellulose, lignin, and pectin (Pettersen 1984, Chen et al. 2020). Of these, cellulose is usually 
regarded as an outstanding commodity due to its abundance and distinctive structural properties. 
It is a linear homopolymer of β-1,4-linked glucose residues, and the coordinated synthesis of 
glucose chains is orchestrated by specific plasma membrane-bound cellulose synthase 
complexes. Annually, plants will produce about 180 billion tons of cellulose, making it the largest 
reservoir of organic carbon on earth (Festucci-Buselli et al. 2007). Pear et al. (1996) isolated and 
identified the CESA genes encoding cellulose synthase for the first time from cotton in 1996. 
Subsequent analysis of the Arabidopsis thaliana genome revealed that a total of 10 genes encode 
CESA proteins with 64% average sequence identity (Holland et al. 2000, Richmond 2000). In 
Betula-related studies, Liu et al. (2012) have isolated four full-length CESA cDNAs from B. 
platyphylla by using the RT-PCR method and calculated the phylogenetic relationship of them. 
Huang et al. (2014) have isolated eight full-length CESA cDNAs from B. luminifera based on 
transcriptome sequencing, and determined their positive influence in tension wood. 

As an important tree species in papermaking, understanding the cellulose synthesis pathway 
of B. pendula will greatly contribute to its use in industrial production. Fortunately, 
the assembled sequences of B. pendula genome have become publicly available, which can help 
us understand this species at the genome expression level (Salojärvi et al. 2017, Chen et al. 
2021). In this study, we identified the genes that likely encode cellulose synthase and related 
enzymes during cell wall synthesis in B. pendula, which will serve as a basis for further gene 
functional studies. 
 

MATERIAL AND METHODS 
 
Identification of B. pendula cell wall synthesis genes 

The B. pendula genome (Salojärvi et al. 2017) and genomic structure information were 
downloaded from the CoGe (comparative genomics) platform. The putative cellulose synthase 
genes were first identified by BLASTP (Basic local alignment search tool - protein) v2.9.0 
(Camacho et al. 2009) with the A. thaliana cellulose synthase genes as queries (e-value ≤ 1e-5). 
We then further manually examined these putative cell wall synthesis genes using the conserved 
domain database of NCBI (national center for biotechnology information) (Marchler-Bauer et al. 
2015) to confirm if they were correctly annotated, and divided them into seven subgroups based 
on their functional type in A. thaliana. In addition, the chromosomal location of the B. pendula 
cell wall synthesis genes was visualized by using TBtools (toolbox for biologists) v0.67 (Chen et 
al. 2018). 
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Phylogenetic analyses of B. pendula cell wall synthesis genes 
To investigate the phylogenetic relationships of the cellulose synthases (CESAs) and 

cellulose synthase-like proteins (CSLs), the phylogenetic tree was constructed for every 
subgroup. The multiple sequence comparison was performed by MUSCLE (multiple sequence 
alignment with high accuracy and high throughput) v3.8.1551 (Edgar 2004) with default 
parameters, and the constraint maximum likelihood phylogenetic trees of each subgroup were 
then be generated by RAxML (randomized accelerated maximum likelihood) v8.2.12 
(Stamatakis 2014) with 1,000 bootstrap trials. The model was selected for the gamma model and 
visualized by iTOL (interactive tree of life) v5.0 (Letunic and Bork 2019). 

 
RNA-seq expression analysis of B. pendula cell wall synthesis genes 

Transcriptome sequencing data (PRJNA535361) from a previous study by us (Chen et al. 
2019) were downloaded to investigate the expressional patterns of B. pendula cellulose synthase 
genes in different tissues. The clean reads of three replicates per tissue were aligned to the B. 
pendula transcriptome by using STAR (spliced trans alignment to a reference) v2.7.3a (Dobin et 
al. 2013), and the accurate transcript quantification was estimated by using RSEM (RNA-seq by 
expectation-maximization) v1.3.3 pipeline (Li and Dewey 2011) with paired-end sequencing 
mode. The normalized expression value was all selected as TMM (trimmed mean of M-values). 

 
Transcription factor regulatory networks in B. pendula cell wall synthesis 

The transcription factors of B. pendula were identified by PlantTFcat (Dai et al. 2013), and 
the conserved domain database of NCBI (Marchler-Bauer et al. 2015) was being used to 
determine whether they are correctly annotated. To perform the weighted correlation network 
analysis between cell wall synthesis genes and transcription factors, we used the WGCNA 
(weighted correlation network analysis) R package v1.69 (Langfelder and Horvath 2008) to 
construct the co-expression network. The TMM value from different tissues of B. pendula was 
as input expression data for this software, and only genes with TMM values larger than 10 for all 
samples were kept. The threshold power (β) value was determined to be 13 and the following 
settings were used: TOM-type, unsigned; mergeCutHeight, 0.15; deepSplit, 2; minModuleSize, 
30; and eventually visualized by the Cytoscape v3.8.0 (http://cytoscape.org/). 
 

RESULTS AND DISCUSSION 
 
Identification of Betula pendula cellulose cell wall synthesis genes 

A total of 28,153 coding genes in B. pendula genome (Salojärvi et al. 2017) were used to 
identify putative cell wall synthesis genes. In total, 46 gene models (Tab. 1) in 7 families were 
identified as putative cell wall synthesis genes in B. pendula genome. These 46 genes encode 10 
cellulose synthase proteins (CESAs) and 36 cellulose synthase-like proteins (CSLAs, CSLBs, 
CSLCs, CSLDs, CSLEs, and CSLGs) in 7 families. Among these families, CESA was 
the predominant cellulose synthase gene family and contains seven members. The rest of 
the gene families all belong to the cellulose synthase-like family, CSLG was the largest cellulose 
synthase-like family containing eleven members, while CSLA was the smallest family with only 
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three members. We then applied quantitative criteria to assign the genes likely to be cell wall 
synthesis genes based on transcript abundance and specificity. The tissue-specific expressional 
data include xylem, roots, leaves, and flowers, and we calculated the expression of the 46 
identified genes. A total of 8 genes showed that expression in the xylem was higher than the 
expression in both flower and leaf. These genes were identified as the cell wall synthesis genes 
BpCESA4, BpCESA9, BpCESA10, BpCSLA2, BpCSLA3, BpCSLC1, BpCSLC4, and BpCSLD4. 

 
Tab. 1: Putative B. pendula cellulose synthase genes in 7 gene families. 

Gene family Gene name Gene ID (B. pendula) Theoretical pI Molecular weight 
CESA BpCESA1 Bpev01.c0196.g0006 6.36 122,491.46 

 BpCESA2 Bpev01.c0205.g0006 6.36 127,415.18 
 BpCESA3 Bpev01.c0777.g0012 6.70 121,270.01 
 BpCESA4 Bpev01.c0000.g0006 8.04 119,178.11 
 BpCESA5 Bpev01.c0402.g0034 6.81 122,759.64 
 BpCESA6 Bpev01.c0480.g0087 7.43 122,927.82 
 BpCESA7 Bpev01.c0598.g0015 6.46 124,289.77 
 BpCESA8 Bpev01.c0603.g0003 6.05 96,459.34 
 BpCESA9 Bpev01.c0374.g0017 6.12 110,387.98 
 BpCESA10 Bpev01.c0374.g0018 6.38 117,638.99 

CSLA BpCSLA1 Bpev01.c0902.g0015 9.20 62,242.93 
 BpCSLA2 Bpev01.c0169.g0024 9.16 61,224.78 
 BpCSLA3 Bpev01.c2286.g0004 9.31 74,447.19 

CSLB BpCSLB1 Bpev01.c1000.g0017 8.61 23,261.32 
 BpCSLB2 Bpev01.c1000.g0013 5.40 42,336.85 
 BpCSLB3 Bpev01.c1000.g0018 7.94 86,260.11 
 BpCSLB4 Bpev01.c1193.g0003 5.64 41,363.16 
 BpCSLB5 Bpev01.c1193.g0012 6.07 42,637.45 
 BpCSLB6 Bpev01.c1193.g0006 4.56 8,816.31 
 BpCSLB7 Bpev01.c1000.g0016 5.96 17,352.82 

CSLC BpCSLC1 Bpev01.c0094.g0029 8.73 76,234.32 
 BpCSLC2 Bpev01.c0515.g0003 8.84 79,284.87 
 BpCSLC3 Bpev01.c0058.g0002 8.74 77,616.24 
 BpCSLC4 Bpev01.c0018.g0093 8.58 82,856.18 

CSLD BpCSLD1 Bpev01.c0016.g0057 4.44 11,023.28 
 BpCSLD2 Bpev01.c0016.g0055 7.34 118,350.37 
 BpCSLD3 Bpev01.c0423.g0009 6.91 128,449.29 
 BpCSLD4 Bpev01.c0949.g0008 6.91 167,167.54 
 BpCSLD5 Bpev01.c1082.g0006 6.09 125,593.88 
 BpCSLD6 Bpev01.c1484.g0010 6.16 121,322.33 
 BpCSLD7 Bpev01.c0364.g0008 8.15 131,707.55 

CSLE BpCSLE1 Bpev01.c1469.g0001 6.41 98,907.76 
 BpCSLE2 Bpev01.c1782.g0020 6.43 84,918.41 
 BpCSLE3 Bpev01.c1782.g0018 7.54 63,693.94 
 BpCSLE4 Bpev01.c2470.g0006 5.93 58,439.48 

CSLG BpCSLG1 Bpev01.c1225.g0008 8.49 82,497.93 
 BpCSLG2 Bpev01.c1739.g0002 8.99 11,851.03 
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 BpCSLG3 Bpev01.c1739.g0001 7.85 69,509.20 
 BpCSLG4 Bpev01.c0188.g0037 6.70 11,889.79 
 BpCSLG5 Bpev01.c2210.g0001 5.74 20,329.79 
 BpCSLG6 Bpev01.c2469.g0001 6.80 18,162.08 
 BpCSLG7 Bpev01.c0995.g0003 7.82 83,335.89 
 BpCSLG8 Bpev01.c1270.g0001 7.83 83,674.44 
 BpCSLG9 Bpev01.c0774.g0001 6.83 84,300.74 
 BpCSLG10 Bpev01.c0774.g0003 7.58 74,176.67 
  BpCSLG11 Bpev01.c0774.g0002 7.53 84,509.94 

Gene information in bold is for the genes most probably encode cell wall synthesis enzymes. 
 

Chromosomal location and gene duplication 
Cell wall synthetases mainly include cellulose synthases (CESAs) and cellulose synthase-like 

proteins (CSLs), so we investigated the formation of CESAs and CSLs based on the 
chromosomal location and intra-genome synthetic information. Similar to the A. thaliana, the 
multiple BpCESAs were scattered across the B. pendula genome and mapped in 13 of 
the 14 chromosomes (Fig. 1 and 2). The BpCESAs were concentrated on chromosome 6, 7, 8, 9, 
10, and 11, with one or two genes per chromosome. The BpCSLs were scattered on 
13 chromosomes except for chr5, and we found that some BpCSLs were organized into 
duplicated blocks, such as BpCSLB1-7 on chr2, BpCSLG2-7 on chr14, and BpCSLG8-10 
on chr1. This situation always originated from duplicative transposition. 
 

 
Fig. 1: The chromosomal location of B. pendula cell wall synthesis genes (Bpe_Chr1-7). 
The silver line represents the chromosome of B. pendula, and the black line represents 
the relative location of CESA and CSL genes on the chromosome. 
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Fig. 2: The chromosomal location of B. pendula cell wall synthesis genes (Bpe_Chr8-14). 
The silver line represents the chromosome of B. pendula, and the black line represents 
the relative location of CESA and CSL genes on the chromosome. 
 
Cellulose synthase (CESA) gene family 

Cellulose is the principal ingredient of the cell walls in B. pendula, and the small microfibrils 
were crystallized by 36 tails of H-bonded-β-1,4-Glc chains catalyzed by cellulose synthases 
(Joshi 2003). Thus, cellulose synthase (CSEA) was one of the indispensable glycosyltransferases 
in plants, which plays a crucial role in regulating cell wall cellulose synthesis and plant cell 
morphogenesis.  

We identified 10 BpCESAs in the B. pendula genome, of which BpCESA4, BpCESA9, and 
BpCESA10 were abundant in xylem (Fig. 3). BpCESA4 was the highest expressed gene in 
the root and xylem of the CESA family. The most similar protein to BpCESA4 was AtCESA4 in 
A. thaliana, which confers plant resistance to bacterial and fungal pathogens while encoding a 
cellulose synthase. Handakumbura et al. (2013) reported that AtCESA4 loss-of-function 
mutants of A. thaliana and Oryza sativa have weak stems and thin or irregular cell walls. 
The protein most similar to BpCESA9 and BpCESA10 was AtCESA8 in A. thaliana, Glass et al. 
(2015) reported that endo‐β‐1,4‐glucanases AtGH9B5 and AtGH9C2 can impact cellulose 
crystallization and plant cell wall development by influencing cellulose synthase AtCESA8. 
In addition, Kim et al. (2014a) reported that transcription factor AtMYB46 can directly regulate 
the secondary wall-associated cellulose synthase AtCESA4 and AtCESA8 in A. thaliana. 
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Fig. 3: Tissue-specific expression profiles and phylogenetic analysis of BpCESA, BpCSLA, 
BpCSLB, and BpCSLC families in B. pendula. The expression was analyzed in three 
independent biological replicates of each tissue, and the phylogenetic tree (1000 bootstraps) 
was constructed by RAxML using the maximum likelihood algorithm. 

 
Cellulose synthase-like (CSL) gene family 

The cellulose synthase-like (CSL) gene family was divided into six families, which were 
CSLA, CSLB, CSLC, CSLD, CSLE, and CSLG. The functions of the CSL family are still being 
explored, but a substantial number of studies were published in recent years. Jensen et al. (2012) 
reported that the CSL genes is associated with hemicellulose synthesis, Schreiber et al. (2014) 
and Doblin et al. (2009) reported that cellulose synthase-like protein CSLFs and CSLHs mediate 
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the synthesis of the cell wall (1,3)(1,4)-β-D-Glucans, but the vast majority of CSL genes 
functions require further study. 

 
Fig. 4: Tissue-specific expression profiles and phylogenetic analysis of BpCSLD, BpCSLE, and 
BpCSLG families in B. pendula. The expression was analyzed in three independent biological 
replicates of each tissue, and the phylogenetic tree (1,000 bootstraps) was constructed by 
RAxML using the maximum likelihood algorithm. 

 
We identified 36 BpCSLs in the B. pendula genome, of which 5 genes were abundant in 

the xylem (Fig. 3 and Fig. 4). They were BpCSLA2, BpCSLA3, BpCSLC1, BpCSLC4, and 
BpCSLD4, respectively. BpCSLA2 and BpCSLA3 were most similar to AtCSLA9 in 
A. thaliana. Expression of CSLs in A. thaliana cells revealed that AtCSLA glycosyltransferases 
can encode cell wall glucomannan and intervene in the progression of embryogenesis (Goubet et 
al. 2009, Liepman et al. 2005). In addition, Kim et al. (2014b) reported that transcription factors 
AtNAC41, AtbZIP1, and AtMYB46 can directly regulate the expression of AtCSLA9 in A. 
thaliana. The most similar protein to BpCSLC1 was AtCSLC4 in A. thaliana, which encodes a 
protein similar to cellulose synthase and its mRNA can move in cell-to-cell. The 1,4-beta-glucan 
synthase AtCSLC4 can form the xylosylated glucan backbone with three xylosyltransferases 
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AtXXT1, AtXXT2, and AtXXT5 in A. thaliana (Chou et al. 2012). Intriguingly, glucan synthase 
AtCSLC4 has opposite orientations in the Golgi membrane (Davis et al. 2010) with mannan 
synthase AtCSLA9, which may cause the functional differences between them. The most similar 
protein to BpCSLD4 was AtCSLD3 in A. thaliana, which part in the cell-wall synthesis of 
tip-growing root-hair cells (Park et al. 2011). Galway et al. (2011) reported that root 
hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants. 
 
Involvement of transcription factors in cell wall synthesis 

Based on transcriptome sequencing data, we performed an extensive analysis between 
putative cell wall synthesis proteins and 2,816 transcription factors of B. pendula 
(Supplementary table S1 on https://doi.org/10.6084/m9.figshare.17056994). The results showed 
that a total of 51 transcription factors were co-expressed with 6 cell wall synthesis proteins, 
which were BpCESA4, BpCESA9, BpCSLA2, BpCSLC1, BpCSLC4, and BpCSLD4 (Fig. 5).  

 

 
Fig. 5: The transcription factor regulatory network calculated by WGCNA. The green dots are 
transcription factors, and the orange dots are cell wall synthesis genes. 
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The highest number of transcription factors were co-expressed with BpCSLC1, up to 27, 
including ARF, IAA, and several other auxin-related transcription factors. BpARF6 was most 
similar to AtARF17 in A. thaliana, Yang et al. (2013) reported that AtARF17 is essential for 
the primexine formation and pollen wall development. BpIAA16 was most similar to AtIAA16, 
which has transcriptional wiring with cell wall-related genes in A. thaliana (Mutwil et al. 2009), 
too. In addition to BpCSLC1, there was a co-expression relationship between BpCESA4 and 
BpCESA9, with 13 transcription factors regulating these two cellulose synthase genes. 
BpNAM69 was most similar to AtNAC43 (NST1) in A. thaliana, which is known to be involved 
in cellulose synthesis. Zhong et al. (2007) reported that inhibition of the expression of both 
AtSND1 and AtNST1 by RNA interference (RNAi) results in loss of secondary wall formation in 
stem fibers, and several fiber-associated transcription factor genes will be down-regulation in A. 
thaliana. BpMYB-HB162 was most similar to AtMYB83 in A. thaliana, Ko et al. (2014) 
reported that the AtMYB46/AtMYB83-mediated transcriptional regulatory program is a 
gatekeeper of secondary wall synthesis.  
 

CONCLUSIONS 
 

Cellulose synthesis requires the plant hormones, nitric oxide, cellulose synthase, and 
a complex transcriptional regulation network. In this study, we identified a total of 10 BpCESA 
genes and 36 BpCSL genes in B. pendula, which include 8 genes that are most likely involved in 
cell wall synthesis. These genes showed striking consistency compared to the cell wall synthesis 
genes in P. trichocarpa, demonstrating that the cellulose synthesis family is conserved during 
species evolution. 

Given the importance of cellulose synthase importance to cellulose synthesis, maybe we can 
limit the rate of cellulose synthesis by directly or indirectly inhibiting the expression of related 
genes, thereby reducing the cellulose content of B. pendula. Oomen et al. (2004) reported that 
reducing of the cellulose content of Solanum tuberosum tuber by antisense expression of 
StCESA3 clones. Zhong et al. (2003) reported that the AtCESA7 mutant of A. thaliana has lower 
fiber cell wall thickness and cellulose content. However, the process of increasing cellulose 
content is not as simple as reducing it. Tan et al. (2015) reported that overexpressing HvCESA 
showed no increase in cellulose content or stem strength in Hordeum vulgare, despite the use of 
a powerful constitutive promoter. Previous studies (Doblin et al. 2002) have shown that 
individual CESA and CSL proteins play different roles in the synthase complex and require 
tightly regulation, so we need more complex strategies in the plant engineering of increasing 
cellulose content. 
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