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ABSTRACT 
 

Plant sap flow is crucial to understanding plant transpiration, plant hydraulic functioning and 
physiological properties. In this study, a method for predicting trunk sap flow of Larix olgensis 
using deep learning was proposed. The method is based on the combined use of Long-short term 
memory network (LSTM) and transformer model, noted as LSTM-transformer model. The 
experimental results show that the proposed method provides more accurate prediction quality in 
terms of correlation coefficient (R2), root mean square error (RMSE) and mean absolute error 
(MAE), compared to the state of the art forecast methods such as BP, DNN, LSTM, and 
transformer models.  

 
KEYWORDS: Larix olgensis, stem sap flow density, sap flow prediction, LSTM-transformer 
model. 
 

INTRODUCTION 
 

Trunk sap density is an important factor affecting plant transpiration and can be an accurate 
long-term reflection of plant trunk transpiration. Trunk sap density results from water loss from 
leaves due to transpiration, allowing plant roots to absorb soil water and transport water through 
the xylem of the trunk to the leaves. Accurate measurement of trunk sap density is essential for 
the analysis of plant water consumption patterns, ecosystem water cycles, and the evaluation of 
water use in terrestrial ecosystems (Si et al. 2005). However, direct measurements of trunk sap 
density are time consuming and high labour consumption (Roy et al. 2022). Therefore, it is 
crucial to develop a model for predicting trunk sap flow density. 

Rosa et al. (2012), Wang et al. (2016) used the SIMDualKc model to estimate transpiration. 
Jiang et al. (2016) proposed a Multiple linear regression (MLR) model to analyze 
evapotranspiration and sap flow variation in hybrid maize. Whitley et al. (2013) used modified 
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Jarvis-Stewart (MJS) and MLR models to estimate trunk sap flow density. Vishwakarma et al. 
(2022) used 30 empirical models to estimate plants transpiration in subtropical India, although 
estimations of transpiration and sap flow was achieved to some extent, empirical or physically 
based models required a large number of observations, and more importantly, it was difficult to 
achieve a complex regression process between transpiration and trunk sap flow determined by 
many variables. 

To overcome the limitations of traditional statistic methods, the machine learning has 
become a widely used method. Zheng et al. (2021) proposed a whale-optimized Support vector 
machine (SVM) model based on maize transpiration, and the results showed that the SVM-WOA 
model was more effective than the MLP model in prediction. Granata et al. (2020) evaluated the 
applicability of random forest, ARDS, MLP and KNN in estimating sap flow in US wetlands and 
found that RF and KNN models were slightly better than ARDS and MLP models. Artificial 
neural network was used to predict sap flow of pear trees based on climatic factors and soil 
moisture (Liu et al. 2009), the results showed that the prediction accuracy of the ANN model 
was better than that of the traditional MLR prediction model. Tang et al. (2018) proposed a 
GANN model with two additional variables, leaf area index and plant height, to estimate maize 
sap flow, and showed that using both environmental factors and maize growth data as input 
variables could improve accuracy. Elbeltagi et al. (2022) developed an MLP-ANN to estimate 
sap flow in the Beas-Sutlej basin, and the prediction accuracy was significantly improved. 

Among various ANNs, the back-propagation neural network or its modified form has been 
considered as one of the most popular methods. Tu et al. (2019) used back-propagation artificial 
neural network model to estimate the trunk sap flow of Pinus sylvestris, and showed that 
the accuracy of the model was higher than that of the model without the incorporation of 
the phenological index. Han et al. (2021) built a three-layer BP models trained by 
the Levenberg-Marquardt algorithm and added crop coefficients and precipitation as input 
variables, the results showed that the BP model was more effective in areas with sufficient 
precipitation. Han et al. (2020) proposed the models for water consumption with back 
propagation neural network (BPNN) and Elman neural network (ENN) based on fuzzy rules, the 
results of ENN model showed that the relative error was reduced by 27.0% compared with the 
BP neural network model. 

Recently, deep learning has emerged as a new approach for predicting trunk sap flow. 
Elbeltagi et al. (2020) used Deep neural network (DNN) to predict crop sap flow values in 
semi-arid areas, and the prediction results reached 0.95, 0.96, and 0.97 in three provinces. 
Elbeltagi et al. (2020) used DNN model to simulate the water footprint of maize and wheat, the 
results showed that DNN models are good for predicting water footprints using historical data. 

RNN networks have also become a widespread approach due to their unique information 
memory capabilities. Feng et al. (2017) used ELM and generalized regression neural network 
(GRNN) models to estimate maize transpiration on the Loess Plateau in China based on climate 
variables, LAI and plant height, the experimental results showed that the ELM and GRNN 
models can accurately estimate maize sap flow using both climate and crop data as inputs. Roy et 
al. (2021) proposed a subtropical evapotranspiration prediction model based on Bi-LSTM, the 
results showed that Bi-LSTM was more effective than SSR-LSTM and LSTM networks. Roy et 
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al. (2022) proposed daily and multi-step forward-looking predictions of evapotranspiration 
based on Bi-LSTM, and the results showed that deep learning models (LSTM and Bi-LSTM) 
were more effective than classical methods in transpiration prediction problems. Chen et al. 
(2020) combined two feature engineering methods, principal component analysis and maximum 
information coefficient, to build a temporal convolution network (TCN) for predicting maize 
transpiration, and their experimental results showed that the coefficients of determination using 
the TCN network were higher than those of the LSTM and DNN networks. Xie et al. (2020) 
used LSTM model to predict transpiration in citrus orchards and found that the LSTM model 
had high accuracy with different number of input features. 

Several studies have been predicting the sap flow denstity of trunk, or predicting sap flow 
based on machine learning and deep learning. But there is a lack of studies on predicting sap flow 
of trunks such as Larix olgensis using deep learning. Therefore, the objectives of the present 
study were to: (1) explore the applicability of BP, DNN, LSTM and transformer models for trunk 
sap flow prediction in Larix olgensis; (2) propose the LSTM-transformer prediction model 
which can improve the accuracy of trunk sap flow prediction in Larix olgensis. 

 
MATERIAL AND METHODS 

 
Site description 

In this study, a five-month (2020.4-9) experiment was conducted on Larix olgensis 
in Mengjiagang Forestry, Jiamusi City, Heilongjiang Province (130°32′42″E - 130°52′36″E, 
46°20′16″N - 46°30′50″N). This region experiences an East Asian continental temperate 
monsoon climate with annual precipitation ranges between 450 mm and 550 mm, annual 
temperature of around 2.7°C to 3.5°C and extremes that can reach a maximum of 35.6°C and 
a minimum of -34.7°C. The annual sunshine hours are around 1955 h and the annual frost-free 
period is around 116 to 125 days (Shao et al. 2017). The soil is classified as brown loam, white 
pulpy, meadow, boggy and peat soils. The most widely distributed soil is typical dark brown loam, 
followed by white pulpy dark brown, and a small amount of submerged dark brown, primitive 
dark brown and meadow dark brown loams (Zhou et al. 2019). Six Larix olgensis of good 
growth and similar morphology were selected as experimental samples. 32 years old, 
the diameter at breach height 13.98 ± 3.67 cm, the average tree height is 19.12 ± 2.82 m and 
the average crown width is 2.78 ± 0.79 m. 

 
Environmental variables and Larix olgensis transpiration measurement 

Vapor pressure deficit (VPD), air humidity, solar radiation, temperature, soil water content 
and soil temperature were recorded by climate factor monitoring stations which were recorded at 
10 min intervals. The ZDR-20 probe was buried at a depth of 20 cm on the upper and lower 
slopes of the sample plots to determine the soil water content and soil temperature.  

Sap flow rates of Larix olgensis were monitored using TDP sensors. Six Larix olgensis were 
chosen for sap flow measurements from April 1st to August 31st. The sensor was placed on the 
north side of the experimental sample, at a height of 1.3 m from the ground. The rough bark on 
the surface of Larix olgensis was scraped off to expose the fresh wood which can ensure that the 
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pressure would not cause the bark to produce sap flow during the experiment. The holes were 
then drilled vertically to a depth of 2 cm using a specific size drill. The heating probe is placed at 
the top and two TDP probes are inserted into the tree sapwood in sequence. The contact 
between the probes and Larix olgensis was sealed with silicone, thus avoiding thermal influences. 
Aluminium foil is also wrapped around the outside to protect the sensors from rain. Finally, 
connect the TDP probe to the CR1000X data collector. The physical diagram of the trunk sap 
collection is shown in Fig. 1. 

 

a)    b)  
Fig. 1: The physical diagram of the trunk sap collection: (a) data collector, (b) physical view of 
sap flow collection. 
 

Sap flux density can be formulated by Granier (1988) (Eq. 1) and VPD by Zhang et al. (2014) 
(Eq. 2): 
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where: Js is instantaneous sap flow density (g·m-2·s-1), which meant liquid flow per unit time 
through unit sapwood area; ΔTm is maximum temperature difference between day and night, ΔT 
is instantaneous temperature difference, and ΔTm is determined with a 10 min intervals. 
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where: VPD - vapor pressure deficit (-), T is the atmospheric temperature (°C), and RH is 
the relative atmospheric humidity (%). 
 
LSTM-transformer 

In this paper, a model combined the LSTM and transformer network model was proposed 
for prediction of trunk sap flow density in Larix olgensis. This provides access to both 
the sequential relationships of the LSTM network capturing temporal information and 
the transformer's ability to model the relationships at time steps, which can improve the accuracy 
of the predictions. The proposed model in this paper is referred to as the LSTM-transformer. The 
architecture of the proposed method as illustrated in Fig. 2. The input was the sap flow and 
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environmental factors, the length and timestamp of the series can be defined, then the time series 
were input into the LSTM and transformer networks for feature extraction. The input variables 
were extracted for the sequence and the time step information features, two hidden features were 
spliced into a vector as the final feature for the sap flow density. The Dense layer took the 
previously extracted features and extracted the correlations between the features after non-linear 
changes. The Dropout layer served to prevent overfitting, the loss function was chosen as MSE, 
the optimizer was chosen as Adam and the activation function was chosen as ReLU. 

 
Fig. 2: The architecture of the proposed method. 
 

Long short-term memory network (LSTM) was proposed by Hochreiter (Hochreiter and 
Schmidhuber 1997) in 1997 as a special variation of RNN network, which can well solve 
the stability and accuracy of long-term dependency relationship problem. The structure diagram 
of LSTM network is shown in Fig. 4. The core idea of LSTM is the introduction of cell state, 
which can transfer sequence relevant information during processing all the way through and 
overcome the effect of short term memory. The LSTM network is set up with three gate 
structures of input, output and forget gates to add and remove information respectively, and can 
learn which information is saved or forgotten during the training process. Zhu (2019) showed 
that LSTM networks can effectively capture time-series features with different inputs. Wu (2020) 
showed that complex dependencies of various lengths can be learned from time-series data using 
a self-attentive mechanism. This transformer model-based approach is a general-purpose 
approach for modelling various nonlinear dynamic systems framework. Due to the special 
structure of the LSTM network memory cells are able to input sequential data in a sequential 
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order. The output state of each time step is influenced by both the input of the current time step 
and the output of the previous time step, thus allowing sequential features to be extracted. But 
this special structure also makes it possible for some information to be lost in the information 
transfer, parallel operations are not possible in LSTM networks. Based on the connections 
shown in Fig. 3a, the LSTM cell can be mathematically expressed as follows: 

                          
Fig. 3: a) Architecture of LSTM, b) architecture of encoder. 
 

The transformer model was first proposed by the Google team (Vaswani et al. 2017) for 
the machine translation problem. Transformer model discards the traditional way of extracting 
sequence information from neural networks and proposes to use attention mechanism for parallel 
computing, which improves the traditional recurrent neural network training. The stronger 
long-term dependency modelling capability works better on long sequences. As is mentioned 
earlier, the RNN-based approach cannot completely eliminate the problem of gradient 
disappearance and gradient explosion for long sequences, but the transformer architecture can 
solve this problem. The transformer model, which is able to perform parallel operations and 
model the relationship between time steps, can compensate for the shortcomings of the LSTM 
networks. Therefore, some scholars proposed a network framework in which two network 
models are serial. The transformer model mainly consists of encoder and decoder. But for the sap 
flow prediction in this paper, which is a time-series deep learning characterisation problem, the 
encoder can perform the function very well, so the decoder part is not used in this study. This 
paper focuses on the transformer encoder structure for analysis, and its structure diagram is 
shown in Fig. 3b. 
 
Experimental setup  

In this study, all the experiments were performed with Jupyter Notebook software and 
Python 3.7.10 on a laptop equipped with the CPU was Intel(R) Core(TM) i5-6300HQ, 2.30GHz 
processor, the RAM was 16GB. 

The dataset was divided into training, validation and test sets at 8:1:1. Due to different 
dimensions and greater magnitude of value in the input variables, to standardizing the values of 
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the input variables was necessary before training the neutral network. All the input values were 
standardized into (0, 1) with respect to the maximum and minimum values. The training 
parameters were set as follows: the time step size was 5, the learning rate was 0.001, the dropout 
coefficient was 0.1, the maximum number of iterations was 1000, and the batch size was 256. 
Moreover, an early stopping strategy was adopted in the training phase, the model was stopped if 
the validation error did not drop in the last ten steps during the training process.  

To evaluate the performance of the proposed method (LSTM-transformer), we compared 
with the methods commonly used in stem sap flow density prediction, including BP, DNN, 
LSTM and Transformer methods. The performances of proposed method for predicting sap flow 
of Larix olgensis were evaluated by three widely used statistical indicators, i.e. correlation 
coefficient (R2), root mean square error (RMSE), and mean absolute error (MAE). 

Correlation coefficient is formulated by Eq. 3, RMSE and MAE are defined by Eq. 4 and Eq. 
5, respectively: 
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where: αi is the measured sap flow, si is the predicted sap flow, ia  is the averaged measured sap 

flow, and is  is the averaged predicted sap flow. The higher R2 (close to 1) and lower values of 
RMSE and MAE indicate the high predictive accuracy of the trunk sap flow model. 
 

RESULTS AND DISCUSSION 
 

Visual comparisons  
BP and DNN models, which are traditional models for sap flow prediction, were chosen to 

compared with deep learning models. As can be seen from Fig. 5, the LSTM and transformer 
models fitted significantly better than the BP and DNN models. The BP model fitted the worst, 
with the largest difference between predicted and measured values. The DNN network showed 
a large error in prediction when the trunk sap flow fluctuated (e.g. sample number 300-500 in Fig. 
5). The LSTM and transformer models fitted better, while the transformer model fitted better 
when the trunk sap flow was rising and falling, but the predictions showed large fluctuations and 
errors in the low part of the sap flow.  
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Fig. 5: Goodness of fits between the measured and predicted sap flow density by BP, DNN, 
LSTM, Transformer and LSTM-transformer. 
 
Quantitative comparison 

The scatter plots of sap flow of Larix olgensis prediction by BP, DNN, LSTM and 
Transformer models against their corresponding measured values in the testing data are given in 
Fig. 6. As observed, machine learning showed a lower dipersion degree of data points, 
as compared with deep learning models. It is clearly seen that, the deep learning model predicts 
the smallest distribution difference of measured and predicted sap flow. The proposed method 
(LSTM-transformer model) (R2 = 0.955, RMSE = 6.70, MAE = 5.29 during testing) achieves 
the best performance than LSTM and transformer models. Compared to the LSTM model and 
the transformer model, the prediction accuracy of the LSTM-transformer model increased by 
1.6% and 1.4%. Obviously, the LSTM-transformer model was more suitable for sap flow of 
Larix olgensis prediction due to the LSTM-transformer model can model complex nonlinear 
relationships between sap flow and environmental factors. 
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Fig. 6: Scatter plots of measured and predicted Larix olgensis transpiration by BP, DNN, LSTM, 
transformer and LSTM-transformer. 
 

The statistical results are presented in Tab. 1. As shown the table, estimated sap flow of 
Larix olgensis differed among BP, DNN, LSTM and transformer models. It was cleared that 
transformer model exhibited the best estimation accuracy during testing (R2 = 0.955, 
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RMSE = 6.70, MAE = 5.29). LSTM model (R2 = 0.953, RMSE = 6.77, MAE = 5.03 during 
testing) slightly outperformed DNN model (R2 = 0.932, RMSE = 8.18, MAE = 5.99 during 
testing), followed by BP model (R2 = 0.918, RMSE = 9.0, MAE = 6.87 during testing). 
Compered to BP model, the estimation accuracy of DNN, LSTM and transformer models 
increased by 4%, 2.5% and 0.2% in terms of R2. Obviously, the transformer model was more 
suitable for sap flow of Larix olgensis prediction due to attention mechanisms was better to 
capture complex dynamic patterns. And then, DNN model was better than BP model due to 
DNN model structure with multi-level feature extraction, which can extract features better than 
BP model, LSTM model was better than BP and DNN models due to LSTM model can 
effectively capture sequence information and remove certain redundant information. 

While BP networks and DNN networks, common methods in the field of sap flow prediction, 
are able to predict stem sap flow density, this paper finds that predictions can be made more 
effectively using deep learning models. Although the LSTM network is widely used in stem sap 
flow density prediction and is able to obtain good predictions, it was less effective compared to 
the transformer model. The LSTM-transformer model proposed in this paper was more effective 
than the above models in predicting the sap flow density of Larix olgensis. 

 
Tab. 1: Statistical values of BP, DNN, LSTM, transformer and LSTM-transformer models 
during testing under various input combinations. 

Model R2 RMSE MAE 
BP 0.918 9.0 6.87 
DNN 0.932 8.18 5.99 
LSTM 0.953 6.77 5.03 
Transformer 0.955 6.70 5.29 
LSTM-Transformer 0.968 5.67 4.14 

 
CONCLUSIONS 

 
This work has proposed an efficient method for forecasting sap flow of Larix olgensis using 

the LSTM and transformer model. The results showed that the LSTM and transformer models 
outperformed the BP and DNN models in predicting Larix olgensis sap flow density; 
the coefficients of determination of the LSTM and transformer models reached 0.953 and 0.955, 
which were 3.8% and 4.03% higher compared to the BP model, 2.25% and 2.47% higher 
compared to the DNN model. The coefficient of determination of the combined 
the LSTM-transformer model reached 0.968, which was 1.6% and 1.4% higher than that of the 
LSTM and transformer models. The results illustrate that the combined LSTM-transformer 
model can achieve accurate prediction of sap flow density in Larix olgensis. 
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