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ABSTRACT

In this paper we tested if the value of the radiofrequencies (RF) heating rate during
pasteurization of two green softwoods, namely, red cedar and pine, can be estimated by means
of an artificial neural networks model that is solved using the Monte Carlo method (MCM).
Based on the proposed approach, the value of the RF heating rate was predicted reasonably with
a relative error of 13 % for red cedar and 8 % for pine. Moreover, the sensitivity analysis revealed
that the RF heating rate is more sensitive to the moisture content and less to power density. In
addition, the model showed that variability in the RF heating rate is mostly caused by the green
moisture content. The proposed model might serve as a tool for estimating the heating time,
which is needed for production planning.

KEYWORDS: Pasteurization of green wood, dielectric heating at radio frequencies, RF heating

rate, neural networks, Monte Carlo method.

INTRODUCTION

Dielectric heating at radio frequencies (RF) has been studied and recommended as an
alternative option to decontaminate green wood traded as logs and timber in order to avoid
some disadvantages of the conventional method such as: Long heating time to reach the kill
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temperature (hours instead of minutes for RF heating), uneven heating and material surface
degrade- if the heating medium is not saturated. The treatment consists in achieving a minimum
temperature of 56°C for a minimum duration of 30 continuous minutes throughout the entire
profile of the wood (IPPC 2009). Most of the recently published studies deal with factors that
affect the RF heating rate (Lazarescu and Avramidis 2011, Watanabe et al. 2011, Lazarescu
and Avramidis 2012, Lazarescu et al. 2012, Huang et al. 2013), by analyzing different time-
temperature schedules, treatment efficiency and temperature distribution (Lazarescu et al. 2009,
2011, Uzunovic et al. 2013).

Being a potential alternative method for phytosanitary treatment of green wood, it is
important for the production planning to estimate the time needed to reach the lethal temperature
for different load characteristics such as species, green moisture content, power density (heat
generated per unit volume) and position of the board within the load (shell or core). In order to
determine the time needed to reach the lethal temperature, the value of the RF heating rate must
be known. To this purpose, a one-dimensional deterministic model was developed by Watanabe
etal. (2011), to predict the heating rate in the RF pasteurization of green softwoods (pine and red
cedar). The model can predict the RF heating rate of boards with various moisture contents under
a known power density distribution. However, the model does not take into account the stochastic
nature of the RF heating process of wood, where the heating rate is a random variable that can
vary from one board to another and even throughout the same board, due to the variability in
moisture content and power density. Therefore, the RF heating rate can be treated as a random
variable described by a probability density function (PDF) that shows all possible values and their
associated probability. In this case, the value of the RF heating rate can be estimated using the
mean of PDF, which is the expected value of a random variable (Kozak et al. 2008). In addition
to the estimated value of the RF heating rate, the unevenness degree of the heating was assessed
using the standard deviation of the distribution.

In this study we hypothesized that the value of the heating rate during RF pasteurization
of green wood can be predicted by means of an artificial neural networks (ANN) model that is
solved using the Monte Carlo method (MCM). We chose neural networks due to their ability
to reveal the nonlinear relationships between the independent and dependent variables of RF
wood heating. Also, due to the fact that ANN was successfully applied alone or in combination
with e-regression Support Vector Machine (e-rfSVM) in the field of wood science, namely, to
develop models for prediction of thermal conductivity (Avramidis and Iliadis 2005), dielectric
loss factor (Avramidis et al. 2006, Iliadis et al. 2013a), drying rates (Wu and Avramidis 2006),
mechanical properties of wood (bending strength and stiffness) (Mansfield et al. 2007, 2011),
plywood bonding quality (Esteban et al. 2011), density (Iliadias et al. 2013b), final moisture
content (Watanabe et al. 2013) and optimization of process parameters (Ozsahin 2013). On the
other hand, the Monte Carlo method was used to take into account the stochastic nature of the
RF heating of wood, considering that MCM was previously used to incorporate uncertainty and
variability in models developed for wood science field (Kayihan 1985, 1993, Cassens et al. 1993,
Cronin et al. 2003, Elustondo and Avramidis 2005). An exhaustive review on the application of
the Monte Carlo method in wood engineering was elaborated by Taylor et al. (1995).

MATERIAL AND METHODS

Experimental data

In this study the dataset needed to develop and validate the model was obtained from a
previous work done by Lazarescu et al. (2012). The work consisted in heating up twenty western
red cedar (Thuja plicara Donn.) and twenty pine (Pinus contorta Douglas ex Loudon subsp.
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Contorta) boards, 40 x 90 mm in cross section and 2 m long from initial temperature to a target
temperature of 60°C in a radio frequency vacuum dryer (RFV) that operates at 6.8 MHz. The
temperature was monitored in six areas of interest that were located in the same vertical plane
(Fig. 1). Two out of six sensors (FISO Technologies Inc., Quebec, Canada) were inserted in
exterior areas (shell), namely #2 and # 5. The other sensors were inserted in interior areas (core),
namely, #1, #6, #7 and #8. In addition, the moisture content (MC) and power density (PD) for
each area of interest were measured and calculated, respectively, according to the methodology
described by Lazarescu et al. (2012). Each board was heated up at five different moisture contents
and lengths.

Insulation

S |

Insulation

Insulation

input layer hidden layer  output layer

Fig. 1: Configuration of heating assembly.  Fig. 2: Architecture of the ANN model used in this study.
8§ — species; MC — moisture content; PD — power density;
HR — heating rate.

The heating rate (HR) of each area of interest was calculated based on the temperature
gradient (AT), which is equal to the difference between initial and target temperature, divided by
the time (At) needed to achieve the target temperature of 60°C (Eq. 1)
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The gathered dataset was divided randomly in three subsets. The first subset (500 values)
was used to develop the ANN model; the second subset (100 values) to test the artificial neural
network model and the third subset (260 values) to solve the ANN model using the MCM.

ANN model development and validation

A multilayer feedforward network (MLFF) structure was developed in this work by means
of the NeuralWorks Predict Software (NeuralWare Inc., PA, USA) and the recommendations
mentioned in the user guide of Predict (NeuralWare 2009). In this architecture, the neurons are
arranged in layers, namely, input, hidden and output layer, in such a way that signals flow from
one layer to another (Fig. 2) (Sablani 2006, Iliadis et al. 2013b). Each layer contains a number
of artificial neurons or processing elements. According to Iliadis et al. (2013b), Ozsahin (2013),
the task of one artificial neuron j is to receive input signals (xi) weighted by connection weights
(w;;) from all neurons located in the previous layer, to sum these weighted signals in order to
produce the net input of neuron (netj), to add the bias (wg) to the netj, and to transmit the output
value to the neurons from the next layer or presented as the output of network (YJ) The output
value is computed by applying a mathematical (usually nonlinear) function, known as activation
or transfer function (Palmer et al. 2006). The final result for a neuron is described by Eq. (2)
(Tliadis et al. 2013b).
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The number of neurons in the input and output layers was equal to the number of independent
variables and dependent variables, respectively. The number of neurons in the hidden layer was
found by trial and error approach. The standard back propagation algorithm was used for the
network training. Once the network was trained, it was tested with the unseen dataset.

The performance of fifteen ANN models was analyzed using both Pearson’s correlation
coefficient (R) and the coefficient of determination (R2) in order to figure out the optimal
structure of the ANN model, respectively, which variables can be used in the input layer and the
number of neurons in the hidden layers. The combination of input variables that generated the
highest R and R2 values was chosen. The chosen ANN structure was analyzed using the mean
relative error (MRE) and the previously mentioned performance measures (R and R2) — Egs. (3),
(4) and (6) (Avramidis and Iliadis 2005, Wu and Avramidis 2006, Benli 2013, Watanabe et al.
2013). Moreover, the predicted values were plotted against the experimental ones.
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where:  n - the number of data points,

a; - actual values of heating rate (°C.min1),
p; - predicted value of heating rate ("C.min1),
- - mean of experimental values ("C.min1),
7 - mean of predicted values, ("C.min1),
SSE — sum squared errors.

Solving the ANN model using the Monte Carlo method
The previously developed ANN model was solved using the direct Monte Carlo method
(MCM). Generally speaking, the method comprises the following steps (Cronin and Gleeson
2006):
e selection of a deterministic model, which in our case was the ANN model;
® statistical analysis of the input random variables in order to figure out the mean, standard
deviation and the distribution that best describe the data;
® generation of random values for the stochastic variables based on the statistical parameters
of the fitted distributions;
e running the model for a large number of times till no significant difference is observed in
the value of the output variable;
e storing the solution of each iteration;
statistical analysis of the output variables using the mean and standard deviation.
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For our model, we considered that the green moisture content (MC) and power density
(PD) are two stochastic input variables (Fig. 2) because they both fluctuate randomly during RF
heating from one board to another or even throughout the same board. The moisture content
variability is due to the biologic origin of wood. On the other hand the variability of the power
density is due to both moisture content and temperature random dispersion inside the load (Zhao
2006). The use of direct MCM is conditioned by the requirement that the predictive variables
are independent (Taylor et al. 1995, Cronin and Gleeson 2006). We assumed these variables as
independent based on the variance inflation factor (VIF) that was lower than 10, namely, 1.51 for
red cedar and 1.85 for pine. This let us conclude that multicollinearity will not cause problems in
the model estimation (Chatterjee and Hadi 2006). The VIF was computed using Eq. (7).

1

VIF = )

In order to generate the random values for MC and PD, the probability density function
(PDF) for each stochastic input variable was figured out using the distribution fitting tool from
the MATLAB Statistics ToolBox (MathWorks, Massachusetts, USA). The normal, log-normal
and Weibull distributions were the candidates both for green moisture content and power
density. The chi-square goodness of the fit test was performed in MATLAB (MathWorks,
Massachusetts, USA) in order to check if the selected PDF best describes the data. The random
values were generated based on the parameters of the selected distribution using the random
number generator tool from MATLAB Statistics ToolBox (MathWorks, Massachusetts, USA).
The generated values that were not in the same range with the experimental data were removed.
Thus, the range of moisture content was 8.29-136.2 (red cedar) and 4.84-96.82 % (pine), and
the power density was between 41.46 — 274.49 (red cedar) and 47.17-231.33 kW.m™ (pine). The
model was executed till the change of the output stabilized in acceptable tolerance. The mean
(M) and standard deviation (SD) were used to summarize the simulation results. In addition,
a graphical comparison using frequency histograms was employed to compare simulated with
experimental data.

A sensitivity analysis was conducted in order to see how the results might change due to the
uncertainty in the input variables (MC and PD) and, also, to see if the behavior of the model
makes sense when changing the input parameters (Datta and Rakesh 2009). The sensitivity
coefficient (S) was calculated as the ratio of the change in the output variable to the corresponding
change in the input variable (Cronin and Gleeson 2006). The sensitivity analysis was also
performed to see the change in the output variable (HR) if the input probability distribution is
assumed to be normal both for MC and PD instead of being the fitted distribution (Law and
Kelton 1991). Also, we wanted to reveal which input variable generates the higher variation in the
RF heating rate (Carro-Corrales et al. 2002). The last mentioned task was performed by running
the ANN-MCM model in two trials. In the first trial the power density was kept constant at 125
(red cedar) and 108 kW.m™ (pine) and therefore we assumed that variability exists only in the
moisture content. The value of variance obtained in this case was reported to the value of variance
when both independent variables were not constant. In the second trial, the value of the moisture
content was kept constant at 42 (red cedar) and 45 % (pine).
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RESULTS AND DISCUSION
ANN model

The optimal structure of the multilayer feed forward network was the one that contained 3
neurons in the input layer (species, moisture content and power density), 4 neurons in the hidden
layer, having a hyperbolic-tangent transfer function and 1 neuron in the output layer, with an
exponential transfer function (Tab. 1 and Fig. 2).

An important finding was that the position of the area within the heating assembly does not

affect the accuracy of the RF heating rate prediction. The model works better without this input
variable (Tab. 1).

Tab. 1: Performance indicators for different architectures of the ANN model.

Input variables Number of neurons Testing
in the hidden layer R R2
S 0 0.35 0.12
P 0 -0.06 | 0.004
MC 4 0.54 0.29
PD 0 0.26 0.06
SxP 2 0.33 0.10
SxMC 0 0.65 0.42
SxPD 7 0.47 0.22
PxMC 8 0.54 0.29
PxPD 0 0.20 0.04
MC x PD 6 0.54 0.29
SxPxMC 9 0.64 0.40
SxMCx PD 4 0.66 0.43
SxPxPD 8 0.47 0.22
PxMCxPD 2 0.54 0.29
SxPxMCxPD 2 0.65 0.42

S- species; P-position (shell or core); MC — moisture content; PD — power density.

The descriptive statistics of the chosen input variables is presented in Tab. 2 for red cedar and
in Tab. 3 for pine. The performance of the ANN model was better in case of red cedar (R=0.61)
than in case of pine (R=0.34) and much better than in the case of using the multiple linear
regression (Figs. 3 and 4, Tab. 4). The mean, standard deviation, minimum and maximum values
of the dataset used to test the ANN model were roughly within the same range with the ones for
the training data set (Tabs. 2 and 3).

Tab. 2: Descriptive statistics of input and output variables used to train and test the ANN model — red
cedar.

Variables Training data set (n =258) Testing data set (n=48)
M SD Max Min M SD Max Min
MC 44.88 26.88 154.71 9.03 46.40 29.24 135.09 12.79
PD 121.30 46.57 366.88 31.69 125.06 35.72 222.67 71.45
HR 3.61 1.89 10.46 0.43 3.47 1.89 11.35 0.36
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Tab. 3: Descriptive statistics of input and output variables used to train and test the ANN model — pine.

Variabl Training data set (n =242) Testing data set (n=52)
e M SD Max Min M SD Max Min
MC 43.02 19.74 116.25 6.88 43.04 16.00 92.04 11.27
PD 106.44 38.57 292.79 34.27 110.40 40.00 283.96 44.68
HR 2.40 1.24 7.38 0.39 2.22 1.23 5.84 0.58
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Fig. 3: Experimental data versus values predicted  Fig. 4: Experimental data versus values predicted
by the ANN model in case of red cedar.

by the ANN model in case of pine.

Tab. 4: Values of performance indicators used to compare the ANN model with the multiple linear

regression.
Speci ANN model Multiple regression
1
pecies MRE % R R2 MRE % R R2
Red cedar 37.15 0.61 0.38 50.10 0.50 0.26
Pine 66.94 0.34 0.12 76.87 0.22 0.05

ANN - MCM model simulation results

The fitted distributions of the green moisture content were in good accordance with the
ones mentioned in other studies, namely, Weibull in case of red cedar and log-normal for pine
(Kayihan 1993, Cronin et al. 2002, Elustondo and Avramidis 2002). The power density followed
a log-normal distribution both for red cedar and pine. The mean, standard deviation, fitted
distribution and parameters of distribution for the input variables are presented in Tab. 5.

Tab. 5: Statistical parameters that were used to generate random values for the independent variables.

Red cedar Pine
MC PD MC PD
Mean 41.72 % 124.92 kW.m?3 45.16 % 107.75 kW.m"3
SD 22.66 % 44.69 kW.m™3 20.27 % 36.12 kW.m?3
Fitted distribution Weibull Log-normal Log-normal Log-normal
Parameters of a=47.26 p=4.76 p=3.69 p=4.62
distribution b =1.97 ¢=0.37 ¢=0.50 ¢ =0.33

a — scale factor, b — shape factor, p - log location, ¢- log scale
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The expected value of the heating rate predicted by the ANN-MCM model (using 10000
iterations) was 3.36 (for red cedar) and 2.23°C.min! (for pine) (Tab. 6). This means that the
simulated results will be by 13 (red cedar) and 8 (pine) lower than the experimental values,
namely: 3.84 (for red cedar) and 2.42°C.min! (for pine). Based on the predicted values, the
time to reach the lethal temperature (56°C) for a temperature difference of 50°C between
initial and target temperature is 14.88 min for red cedar instead of 13.02 and 22.42 instead of
20.66 min for pine. The error between the predicted and measured heating time can be considered
reasonable even for RF heating, which is a fast heating method, considering that two or three
minutes differences between experimental and predicted value don’t play an important role in the
production planning. In addition, the about 2 minutes longer time estimated by the model can be
overcome by a safety factor that is recommended to be used in order to alleviate the concern of
under-treatment (Uzunovic et al. 2013).

The prediction of the standard deviation was less accurate than expected. The ANN-MCM
model predicted a lower variation of the RF heating rate in-between the boards, and therefore, a
much more uniform heating of the boards than in real life (Tab. 6, Figs. 5 and 6). The discrepancy
between the actual and the predicted variation might be due to the low performance of the ANN
deterministic model. However, the accurate prediction of the standard deviation is recognized as
a difficult task, as also pointed out by Carro-Corrales et al. (2002).

Tab. 6: Mean and standard deviation values predicted by the model vs. measured values.

RF heating rate, °C.min"1
Probabilistic model Experimental runs Relative error %
Mean SD Mean SD Mean SD
Red cedar 3.36 1.00 3.84 2.02 13 50
Pine 2.23 0.35 2.42 1.35 8 74
25 60.00

50.00

® Model * Experimental

40.00

™ Model " Experimental
30.00

Frequnecy (%)
Frequency (%)
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Q%\»\%n’x%s%s%s%ﬁ & 3
Heating rate classes (°C.min‘) Heating rate classes (°C.min)

Fig. 5: Experimental and simulated RF heating Fig. 6: Experimental and simulated RF heating
rate distribution — red cedar. rate distribution — pine.

Sensitivity analysis results

The results revealed that the value of the RF heating rate in case of red cedar was more
sensitive to the moisture content than to the power density (Tab. 7). With pine, the heating rate
was sensitive only to the moisture content: A change by 10 % of the power density value did not
affect at all the value of the RF heating rate; increasing the change in PD from +10 to =50 %
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caused non-significant change (by 2 %) in the output variable. Consequently, we concluded that
the model is less sensitive to power density in the case of pine. This could be due to the fact that
red cedar has better dielectric properties than pine (Lazarescu et al. 2012).

Tab. 7: Results of the sensitivity analysis.

Input Change in Change in Sensitivity
Species input variable Input PDF | output variable | coefficient (S),
parameter %) %) %)
MC, % Red cedar +10 Weibull 4.5 +0.45
Pine Lognormal +3 +0.3
PD, kW.m?3 Red cedar +10 Lognormal +2 +0.2
Pine +10 Lognormal 0 0
+50 Lognormal +2 +0.04
MC, % Red cedar - Normal* -2.40 -
PD, kW.m3 Normal*
MC, % Pine - Normal *** -2.76 -
PD, kW.m3 Normal ****

*(M=41.72, SD=22.66), ** (M=124.92, SD=44.69), *** (M=45.16, SD=20.27), *** (M=107.75, SD=36.12)

The sensitivity analysis also revealed that when the PDF of the input variables was changed
from the fitted distribution to an estimated normal distribution, the error of the model increased
by about 2.5 %. In addition, the parametric study revealed that the moisture content had the
greatest effect on the final variation of the RF heating rate. The moisture content accounted for
about 90 % of the total variance in the RF heating rate, in case of both species. Variability in
power density had a lower effect on the final dispersion of the heating rate (about 10 % of the
total variance). Therefore, sorting green boards into different moisture content groups prior to
pasteurization — similar to the methodology recommended by Elustondo et al. (2010) for wood
drying — might be an option to solve the problem of unequal heating during RF pasteurization, in
addition to a slower heating up to the lethal temperature (as mentioned by Uzunovic et al. 2013).

CONCLUSIONS

This work showed that the value of the RF heating rate during pasteurization of green
softwoods can be reasonably predicted, namely, with a relative error of 13 for red cedar and
8 % for pine, by means of an ANN model that is solved using the Monte Carlo Method. The
proposed modeling tool revealed that the variation in the RF heating rate is mostly caused by
the moisture content. Therefore, sorting boards into different moisture content groups prior to
pasteurization might represent a solution to minimize the degree of uneven heating. Although the
use of the model is limited by the experimental conditions under which the dataset was gathered,
it is obvious that a probabilistic model can give us more information needed both for production
planning and to optimize dielectric (RF) heating, as a swift and environment-friendly method to
decontaminate green wood.
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