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ABSTRACT

In this work, we drew the experimental or the true creep-recovery curves of Entandrophragma 
cylindricum known as sapelli from the values obtained during many four points f lexural tests 
carried out on several samples of this hardwood. Thereafter, the experimental values have been 
perturbed by the white Gaussian noise of the gauges and this allowed us to draw the noisy curves 
of deformations. The creep test lasted ten hours and the recovery forty hours. Our main target in 
this work was to implement the recursive discrete Kalman filter, in order to predict or to estimate 
the deformation of this species undergoing a constant stress. From the simulation, since our 
estimate and our state have the same expected value, then our estimate is not biased. The true 
deformation and the estimated deformation curves are almost too close to distinguish from one 
another. Once the Kalman filter applied to our system satisfied these two preceding criteria, we 
are able to mention that our estimator has a good response therefore, it is an optimal filter. 

KEYWORDS: Creep, discrete Kalman filter, Gaussian white noise, linear stochastic difference 
equation, recovery, stress.

 INTRODUCTION

Entandrophragma cylindricum referred to as sapelli is a forestry species encountered mostly in 
west and central African forests. In Cameroon this wood is widely exploited in several domains. 
For example, in many localities bridges, houses and pigsty are built with this material and their 
lifespan is significant. Physical and mechanical properties of this species have already been the 
subject of extensive research (Mvogo 2008). But from the bibliography we explored, neither the 
creep behavior of this biomaterial under a constant stress nor the prediction of its lifespan via 
a powerful means as the Kalman filter have not yet received particular attention. Considering 
the importance of this biomaterial in our society, it is of paramount interest to study the effect 
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of gauges noise on its creep behavior through flexural tests on some samples. Whatever the 
gauge considered, its working is seriously influenced by parasitical effects like the temperature, 
the hysteresis phenomenon and the linearity errors of the maker. When a gauge is fixed on a 
sample of wood, it undergoes deformations following the proper dilatation of the material due 
to thermal effects; this is because both the gauge and the sample do not have the same thermal 
dilatation coefficient. Besides, during the creep it is impossible to foresee the thermal effect on 
the connection cables of the gauges which generates serious f luctuations on the deformation 
(Bertholet and Fanchon 1974). We can also underline the f luctuations generated by the supply 
voltage that perturbs the creep.  The true deformation which is the useful information became 
drown in the generated noise.     

This work is a part of an effort to build a dynamic data application system for hardwoods. 
The method proposed in this paper was motivated by the observation that straightforward 
application of Burger and Schapery models to prediction of creep behavior of biomaterials (Talla 
et al. 2010) always failed, because the models did not take into consideration the f luctuations of 
temperature, humidity and mainly the noise of sensors which perturb seriously the deformations.   
The discrete Kalman filter appears as the ideal model and tool to solve this problem, because it 
can remove the undesired noise from our useful deformation and it also takes into consideration 
estimation of past, present and even future states (Fortunier 1998). Besides, due to the fact that 
the creep is a lasting phenomenon, it becomes more difficult and boring for an experimenter to 
measure manually the deformation of the material over a large scale of time. The Kalman filter 
also being a powerful predicting tool then, knowing some experimental values at the beginning 
of the creep test, the filter can predict the creep behavior of the material over a large scale of 
time while minimizing the estimation error. This method is time gaining for the experimenter 
and it also allows him to avoid accident risks that may occur during the test with devices. Four 
points’ f lexural tests have been first carried out on three samples of our species; thereafter the 
experimental values of deformation collected allowed us to build true, noisy and estimated 
Kalman curves of creep recovery of the hardwood.

Theories of f lexural deformation and Kalman filter
Theory of flexural deformation

In four-points bending, the maximum tensile stress occurs at the middle of the bottom area 
of the beam and compressive stress at the top. Likewise, in this zone, the deflection is maximum 
(Pramanick and Sain 2006). In the below figure, P is the applied load, L the span of beam and 
L/3 distance between the points of application of load and the support.

 

Fig.1: A typical four-point bending.

The corresponding maximum deflection at the middle of the beam is obtaining by:

                	          (1)

Where the quantity E represents the young modulus of the beam and I stands for its quadratical 
moment of inertia.
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Theory of discrete Kalman filter
In 1960 Kalman published his paper describing a recursive solution to the discrete-data 

linear filtering problem (Greg and Bishop 2006). Since that time, due in large part to advances in 
digital computing; the Kalman filter has been the subject of extensive research and application, 
particularly in the area of autonomous or assisted navigation.

The process to be estimated
The Kalman filter addresses the general problem of trying to estimate the state x of  

a discrete-time controlled process that is governed by the linear stochastic difference equation

	 (2)

With a measurement equation 

	 (3)

The random variables wk and vk represent the process and measurement noises respectively.      
They are assumed to be independent of each other, white and with normal probability 
distributions (Evensen 2003). A white noise is a stochastic process with autocorrelation different 
from zero only at the origin but zero everywhere. It is a de-correlated process.

( ) (0, ) and ( ) (0, ) with  and T T
k k k kp w N Q p v N R Q E w w R E v v   = = = =    	 (4)

Here, we assume constant the process noise covariance Q and measurement noise covariance R 
matrices.

In the above equations A, B and H are constant matrices, k is the time index; x is called 
the state of the system; u is a known input to the system and y is the measured output vector. 
The vector x contains all of the information about the present state of the system, but we cannot 
measure x directly. Instead we measure y, which is a function of x that is corrupted by the  
noise v. We can use y to help us obtain an estimate of x, but we cannot necessarily take the 
information from y at face value because it is corrupted by noise.

The computational origins of the filter
We define  to be our a priori state estimate at step k given knowledge of the process prior 

to step k, and  to be our a posteriori state estimate at step k given measurement yk. We can 
define a priori and a posteriori estimate errors as

	 (5)
The a priori estimate error covariance is then 

	 (6)

And the a posteriori estimate error covariance is

	 (7)

In deriving the equations for the Kalman filter, we begin with the goal of finding an equation 
that computes an a posteriori state estimate  as a linear combination of an a priori estimate   
and a weighted difference between an actual measurement yk and a measurement prediction  
H  as shown below Eq. (8)

	 (8) 
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The difference  is called the measurement innovation, or the residual. The matrix 
K in (8) is chosen to be the Kalman gain that minimizes the a posteriori error covariance (7). One 
popular form of the resulting K that minimizes (7) is given by (Hwang et al. 1992)

	 (9)

The discrete Kalman filter algorithm
The Kalman filter estimates a process by using a form of feedback control: The filter estimates 

the process state at some time and then obtains feedback in the form of noisy measurements. As 
such, the equations for the Kalman filter fall into two groups: time update equations also called 
predictor equations and measurement update equations referred to as corrector equations. The 
predictor equations are responsible for projecting forward the current state and error covariance 
estimates to obtain the a priori estimates for next time step. The corrector equations are 
responsible for the feedback (Welch and Bishop 2006).

The specific equations for the prediction step are the following:

   	                                      (10)

     	              (11)

The specific corrector equations are the following:

	 (12)

	 (13)

	 (14)

Modeling of the dynamic system
Let ,  and ε ε ε  and ,  and ε ε ε  be respectively the deformation, the speed of deformation and the 

acceleration of the sample of wood undergoing a constant stress σ. We are collecting the 
deformation during the creep after each T seconds. From our knowledge in mathematics, we can 
express the deformation at the time k+1 as below:

	 (15)

here  kε  is the white noise of  gauges that perturbs the deformation. The speed of deformation at 
the same time can be derived from the preceding formula as:

	 (16)

In this relation the speed of deformation is perturbed by the white noise  kε .

Let  and  be the state vector respectively at the time k and k+1. .. 

represents the state noise vector.  Eqs. (16) and (17) can be written in the following

form:

	 (17)

From this relation we can derive the state transition matrix A and the control matrix B as:

	     (18)
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Let us look for the observation matrix H referred to as the measure matrix:
In the following system of equation, 1ε  is the measure of the deformation perturbed by 

the measurement noise b1 and 1ε  is the measure of the speed of deformation perturbed by the 
measurement noise b2.

	          (19)

Let  be the measurement vector and  the measurement noise vector.

	 (20)

It is straightforward from this relation that the observation matrix is 

	 (21)

We are now looking for the process noise covariance Q and measurement noise covariance R 
matrices that match well our system. They are defined by the following relations:

	 (22)

	 (23)

Where the capital letter E stands for the expectation value.

MATERIAL AND METHODS

The material used is the Sapelli, of scientific name Entandrophragma cylindricum. Our study 
was done on three samples well dried of this species from Cameroon forest. The selected samples 
did not have any macroscopically observable defect. They were all rectangular and had 34 cm of 
length, 2 cm of width and 2 cm of thickness. The strain was measured using R = 120Ω±0.3% 
strain gauges (Fortunier 2003 and Bertholet 1974) connected in an half Wheatstone bridge as 
indicated in Fig. 2. On every specimen was fixed symmetrically two strain gauges. The strain 
was converted into deformation using the strain bridge EI 616 from DELTALAB. The creep 
lasted for 10 hours and the recovery for 40 hours. The temperature and relative humidity of the 
test room are monitored by the electronic thermo-hygrometer, model ETHG913R from Oregon 
Scientific.

Fig. 2: Rectangular beam carrying two symmetrical gauges.

On this Fig. 2, E and S represent the gauge electrodes that are directly connected to the 
strain bridge and R stands for the gauge electrical resistance. During the test the sample is lain 
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on the test machine in such a way that one gauge is on the top and another one symmetrically on 
the opposite face of the sample.

Fig. 3: Bending creep testing device.

The device used for the bending creep test is illustrated by the diagram in Fig. 3. The 
device setup was inside the air-condition room. Each specimen was placed horizontally on the 
two supporting points of the device. The distance between the supporting points was 340 mm. 
A symmetrical load was applied at each of the third-points of the specimen. At the supporting 
points and at the loading points, we used a cylinder made of steel, to press the surfaces of the 
beam, in order to minimize the perpendicular shearing strain. We tested all the three samples 
with eight different loads. But in this paper, we just present the results obtained with a constant 
load of 35 kg which is equivalent to a constant stress of σ = 12.86 MPa. Because we wanted to test 
the performance of the predictor-corrector Kalman filter applied to a biomaterial.

RESULTS AND DISCUSSION

We first carried out a 10 hours creep test with three different samples of Sapelli previously 
mentioned under a constant stress of σ = 12.86 MPa. Our software had been programmed to 
measure the deformation after one second. So from the previously modelling of the system, it 
comes that T = 1 s. The deformations were measured with a square of standard deviation of  
b12 = 225.10-8 and the square of standard deviation on the speed of deformation was  
b22 = 6,25.10-8. The known input of our system u is the acceleration of the creep and the value 
is u = 10-8 m/m/s2.

From Eq. 17 since at the step k + 1 the deformation is proportional to the acceleration of 
creep, the only value that suits the simulation processes is the coefficient 0.5. We can consider this 
parameter as the link between the deformation and the creep acceleration. Then, the maximum 
variance on the deformation is 2 42,5.10ε =  and since 1 1.kε ε+ �  (that is the speed is directly 
proportional to the acceleration) then, the maximum variance on the speed of deformation is 
2 510ε −= . The various matrices used during the creep test in the Kalman filter are:

And those used during the recovery phase for the samples are the following:

We present only the results from the sample S1 in order to avoid many figures, all the three 
samples we tested having similar results.
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Fig. 4: The left panel shows the true deformation (blue line curve) as well as the measured noisy 
deformation (red cross curve) for the model. The right panel is similar and show in addition the estimated 
deformation (green curve) by the Kalman filter.

 
 

Fig. 5: The left panel depicts the true deformation (blue line curve) as well as the measured noisy 
deformation (red cross curve) for the model during the recovery. The right panel is similar and shows in 
addition the estimated deformation (green curve) by the Kalman filter. 

From the creep-recovery curves of sample S1 Figs. 4 and 5, we can notice that the estimated 
deformation and the true deformation are almost too close to distinguish from one another. 
The noisy-looking curve is the measured deformation. The good agreement between both 
curves means that the Kalman filter algorithm has removed the noise while retaining the useful 
deformation. Then the filter converges and has a good response. Several authors studied the creep 
behaviour of wood species (Talla et al. 2010) and (Pramanick and Sain 2006) but did not take 
into consideration the influence of noise on the response of their samples. The consequence is 
that their result may be biased or not enough reliable when compared to our results in this paper. 

Figs. 7 and 6 depict the error between the true deformation and the measured deformation, 
and the error between the true deformation and the Kalman filter’s estimated deformation. 
The measurement error has a standard deviation of about 1.5.10-4 m.m-1. It comes out from 
these figures that the estimated deformation error stays about zero. The consequence is that the 
Kalman filter has minimized the variance of the estimation error. The behaviour of the discrete 
Kalman filter applied to creep is similar to its behaviour applied to wild fire (Craig and Mandel 
2006) or to electric signals (Simon 2001, Welch and Bishop 2006). This means that the filter is 
a powerful instrument for creep simulation and lifespan prediction.
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Fig. 6: The estimation error curve of deformation 
(blue line curve) and the measurement error curve 
of deformation (red curve) for the model.

Fig. 7: The estimation error curve of deformation 
(blue line curve) and the measurement error curve 
of deformation (red curve) for the model during 
the recovery phase.

 

Fig. 8: The left panel shows the true speed of deformation (blue line curve) as well as the measured noisy 
speed of deformation (red cross curve) for the model. The right panel is similar and depicts in addition the 
estimated speed of deformation (green curve) by the Kalman filter.

Fig. 8 shows a bonus that we get from the Kalman filter. Since the creep velocity is part of 
the state x, we get a velocity estimate along with the deformation estimate. The creep velocity 
decreases rapidly at the beginning of the test (that is the primary creep) when the sample is just 
loaded. During the secondary creep, the velocity remains constant until the end. It was supposed 
to increase after this creep phase if our test continued until the breaking point. The shape of 
the speed during the creep test is similar to that obtained by (Dieter 1988) when dealing with 
mechanical metallurgy and (Doraiswamy 2002). This analogy between our results and the 
mentioned preceding ones is a proof that Kalman filter is polyvalent.

Figs. 9, 10 depict the characteristics of the gauges noise that perturbs the creep behavior of 
the samples. It is evident from the histograms curves that both the creep speed and the creep 
measurement noises are Gaussian.

From the creep-recovery curves of samples S1, S4 and S5 Figs. 4 and 7, we can notice that 
the estimated deformation and the true deformation are almost too close to distinguish from one 
another. The noisy-looking curve is the measured deformation. The good agreement between 
both curves means that the Kalman filter algorithm has removed the noise while retaining the 
useful deformation. Then the filter converges and has a good response.
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Fig. 9: Panel (a) depicts the measurement noise that perturbs the creep speed and panel (b) shows the 
measurement noise that perturbs the deformation of the samples.

 

Fig. 10: Panel (a) shows the histogram of the creep speed measurement noise and panel (b) depicts the 
histogram of the creep or deformation measurement noise.

Figs. 6 and 7 depict the error between the true deformation and the measured deformation, 
and the error between the true deformation and the Kalman filter’s estimated deformation. 
The measurement error has a standard deviation of about 1.5.10-4 m/m. It comes out from 
these figures that the estimated deformation error stays about zero. The consequence is that the 
Kalman filter has minimized the variance of the estimation error.

Fig. 8 shows a bonus that we get from the Kalman filter. Since the creep velocity is part of 
the state x, we get a velocity estimate along with the deformation estimate. The creep velocity 
decreases rapidly at the beginning of the test (that is the primary creep) when the sample is just 
loaded. During the secondary creep, the velocity remains constant until the end. It was supposed 
to increase after this creep phase if our test continued until the breaking point.

Figs. 9 and 10 depict the characteristics of the gauges noise that perturbs the creep behavior 
of the samples. It is evident from the histograms curves that both the creep speed and the creep 
measurement noises are Gaussian.
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CONCLUSIONS

Our task was to implement the discrete Kalman filter under matlab language to estimate 
the creep behaviour of Entandrophragma cylindricum. From the numerical results of simulation, it 
comes out that the variance of the estimation error is near zero, the estimate and the state have 
the same expectation value meaning that our estimate is not biased. These results are in perfect 
agreement with the rules that describe the filter (Kalman 1960, Welch and Bishop 2006). This 
work demonstrates the workings of the Kalman filter applied to a biomaterial and it is evident 
that the filter has a good response since the estimate appears considerably smoother than the noisy 
measurements. So this method of estimation is powerful and efficient than that the Burger’s and 
Schapery’s models of creep prediction carried out by (Talla et al. 2010).
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