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ABSTRACT

In order to improve dimensional stability and control deformation, heat treatment (HT) and 
wax impregnation (WI) were conducted to large size boards (LB) of Pterocarpus macrocarpus and 
the tangential swelling were compared in various relative humidity (RH) conditions. The results 
show that the tangential swelling and shrinking of control group and treated group performed 
differently corresponded to various relative humidity (RH). Comparing with control group, 
the swelling ratio of HT combined WI group was much less, and followed by 180°C-3h HT 
group. The maximum swelling ratio decreased by 31% and 29% in humidity chamber and indoor 
conditions respectively. The swelling ratio was affected by size of samples, LB showed smaller 
welling ratio than small sample. Wax filled in cell cavities and presented uneven distributions 
after impregnation. The rate of wood hygroscopicity was reduced after HT combined WI 
treatment which was an effective method on improvement of wood dimensional stability.

KEYWORDS: Pterocarpus macrocarpus, heat treatment, wax impregnation, dimensional stability, 
modification. 

INTRODUCTION

Pterocarpus macrocarpus mainly grows in Myanmar, Laos and Thailand, belonging to the 
butterfly-shaped flower Pterocarpus, Rosewood mahogany (Azratul et al. 2017), which is 
categorized as a red Suanzhimu class in China national standard— “Hongmu” (GB/T18107-
2017). Pterocarpus macrocarpus has straight trunk, branches few and it is excellent wood tree 
species. The heart wood of Pterocarpus macrocarpus has important practical value due to its special 
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properties such as reddish brown, texture clear and diverse which bring visual enjoyment and 
psychological pleasure to human (Wisittipanich et al. 2012). In addition, the mechanical property 
of high density and hardness of the heart wood are much better for producing high-grade 
rosewood furniture and works of art (Chen et al. 2018, Jiang et al. 2018, Li et al. 2018).  

Recently, rosewood furniture have become more and more popular among Chinese high-end 
home furniture consumption due to not only its high appreciation and collection value, but also 
its healthy value (Jiang et al. 2016). Therefore, people paid more attention to product quality such 
as deformation and cracks (Liu et al. 2017, Huang et al. 2018, Zhang et al. 2019) of rosewood 
furniture during the process of manufacture and daily use. Wood is a natural polymer material 
composed of cellulose, hemicellulose and lignin (Sun et al. 2019, Sun et al. 2019) which have 
large amount of hydroxyl groups. Wood exhibits shrinking or swelling due to its hydroxyl groups 
desorbing or absorbing waters. The defects such as warping and cracking may occur when wood 
used in an environment with large relative humidity f luctuations. Rosewood, such as Pterocarpus 
macrocarpus deforms severely compared with common wood due to its high density and high 
extracts (Liu et al. 2017, Huang et al. 2018, Zhang et al. 2019). The defects reduce the service 
life and value of rosewood products.  

Although wood drying improves wood dimensional stability (Liu et al. 2019a), it cannot 
meet further requirements of rose wood production. The dimensional stability can be improved 
by many ways (Beck et al. 2017, Joffre et al. 2017, Moghaddam et al. 2016, Liu et al. 2019b, 
Ozkan et al. 2017) which generally can be classified into chemical modification and physical 
modification (Altgen et al. 2016, Avamidis et al. 2011, Hosseinpourpia et al. 2017, Li et al. 
2017). Although chemical modification can obtain good results of dimensional stability, it can 
be harmful for human health and environment (Chen et al. 2008). Heat treatment improves 
wood excellent water repellency performance, however, the disadvantages of darkened color and 
lowered mechanical strengths restrain its application (Zhang et al. 2007), especially for expensive 
rosewoods. The modification on wood of waxes, particularly paraffin waxes as water repellents, 
is a potential novel impregnation approach (Schultz et al. 2007). The wax application on wood 
can be divided into two categories as wax impregnation (Li et al. 2015, Scholz et al. 2010, Yang  
et al. 2017) and WI combined with other modification (Humar et al. 2016, Liao et al. 2016, 
Wang et al. 2016). Wood dimensional stability is improved and water uptake rate are reduced 
after wax fills the cell cavity (Kaldun et al. 2016, Sedighi et al. 2016, Xie et al. 2013). In contrast 
to HT, the mechanical property and natural color and texture maintains well of WI.

Although wood dimensional stability could be improved obviously by HT or WI, few 
researches (Li et al. 2015, Qian et al. 2019) were carried out to rosewood. In addition, the 
effect on dimensional stability was conducted using small specimens in the laboratory. There 
were no previous studies on medium temperature HT combined with WI for large size boards 
of Pterocarpus macrocarpus. The prime object of present study was to compare the performance 
of wood treated by HT and subsequently WI against moisturizing in the laboratory and indoor 
conditions. In parallel, the distribution of the impregnation wax was observed by scanning 
electron microscope (SEM). These data are of vital importance for assessment of the overall 
performance of rosewood materials.  

MATERIAL AND METHODS

Material
Some uniform and defect-free air dried Pterocarpus macrocarpus boards were used in this 

study which were supplied by Xian You Degoo Furniture Company, China. The initial dimension 



965

Vol. 65 (6): 2020

of the boards was 250 mm (T) × 14 mm (R) × 2200 mm (L). The specifications were 250 mm 
(T) × 14 mm (R) × 420 mm (L) specimens after sawing, and the initial moisture content (MC) 
was 9%. The specimens were divided into 5 groups, and each group contained 2 pieces of boards. 
Group 1 was used for comparison as control group, other groups were treated by heat or heat 
combined with WI according to the experiment design in Tab. 1. Wax was used for impregnation 
which has low molecular weight of 500 g to 800 g and a low melting point of 50°C to 60°C.

Equipment
The equipment in this study included a heat treatment chamber (Jiangsu XingNan Wood 

drying equipment Co., Ltd, Nanjing, China); a constant temperature and humidity chamber 
(DF-408, Nanjing FuDe Instrument Co., Ltd, Nanjing, China); an electricity heat drum wind 
drying oven (DHG-905386-III, Shanghai Cimo Medical Instrument Co., Ltd, Shanghai, 
China); a scanning electron microscope (SEM, FEI Quanta 200, FEI; Holland); an Electronic 
balance, accuracy 0.001g (ShangHai Sincere Dedication Of Science and Technology Innovation 
Company).

Heat treatment and wax impregnation
In order to prevent checking during heat treatment, all specimens were dried at 60°C in  

a constant temperature and humidity chamber until the wood MC was 3% prior to heat treatment. 
The weight and dimensions of wood specimens were measured after cooling to room temperature. 
Then the wood specimens of group 2, 3, 4 and 5 were treated respectively in a superheated steam 
chamber at the designated temperature and time in Tab. 1. Group 1 of untreated wood samples 
served as control for comparison purposes. After cooling, group 3 were fully immersed into 
liquefied wax in a steel tank at 60°C and were treated for 264 h (11 days). After impregnation, 
the specimens were kept at a constant temperature of 30°C for 1 h after wiping the residual 
impregnation wax, and then the weight and dimensions were measured.

Tab. 1: Experimental design of the treatment processes.

Group Treatment Temperature (°C) Time (h)
1 - - -
2 Heat 130 6
3 Heat 130 6
4 Heat 150 3
5 Heat 180 3
3 Heat + Wax 60 264

Estimation of dimensional stability
The degree of dimensional stability was determined by estimating the tangential swelling 

ratio (S) using hygroscopicity testing. Despite the comprehensive literature on the dimensional 
stability of small size HT wood, limited information is available concerning the behavior of 
large size HT hardwoods. Therefore the dimensional stability of small size samples and large 
size boards (LB) were compared in this study. Seven small samples of size 20 mm (T) × 14 mm 
(R) × 20 (L) mm were prepared for each group. They were produced from the middle part of  
a slat which was sawn from the second board in each group. Large size boards, 415 mm (T) ×  
14 mm (R) × 420 mm (L), were glue jointed using the first board and the left parts of the second 
board. Finally, small samples together with large size boards were oven-dried at 103 ± 2°C until 
a constant weight and dimensions were obtained prior to dimensional stability test.
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Moisture performance of wood material may be affected by test methods and duration (Davor 
et al. 2020). Therefore, for LB, the dimensional stability tests of control group, HT groups and 
HT combined WI group were conducted in a humidity chamber and indoor environment. For 
small samples, only indoor tests were conducted. To imitate the wet and dry end-use conditions, 
LB were conditioned for several weeks first at 40°C and 90% and then at 40°C and 35%. The 
weights and tangential dimensions at three locations were measured once every 2 days during 
the chamber testing. Then, LB together with small samples underwent dimensional stability 
testing at indoor environment of 10-30°C and 45% - 75% RH, measurements of weights and 
tangential dimensions were conducted once every 1-2 months. The tangential swelling ratio (S) 
was determined by the following equation:

S= 100×( L1- L0 )/ L0   (1)

where: L1 is tangential dimension of sample at measurement,
 L0 is tangential dimension of the oven-dried sample.

Distribution of the wax in wood  
In order to investigate the extent of WI and the internal wax distribution, three pieces of 

wood from control, 180°C-3h HT, and the WI groups were randomly selected. The cross sections 
were observed by scanning electron microscopy (SEM).

RESULTS AND DISCUSSION

Dimensional change characteristics of large size boards in the humidity chamber
Fig. 1 is the swelling ratio curves of LB during absorption and desorption process in 

humidity chamber and indoor environment. In order to compare the dimensional changes of 
modified wood, the detailed swelling and shrinking ratio curves are presented in Fig. 2 and  
Fig. 3, resp. Fig. 2 shows swelling characteristics during absorption process (0-32 days) in  
a high RH of 90% and shrinking characteristics during desorption process (32-54 days) in a low 
RH of 35%. Fig. 3 presents the swelling and shrinking characteristics (54-473 days) of indoor 
environment. It was observed that the ratio of swelling and shrinking in humidity chamber 
differed from that of indoors, which may be mainly attributed to RH in both conditions. Wood 
swell and shrink proportionally with the magnitude of the change in their moisture content (Cai 
et al. 2019). High swelling ratio is mainly attributed to wood cell wall absorbed more water vapor 
in higher RH condition. 

As seen in Fig. 2, the swelling ratio of LB differed from modified conditions during the 
absorption process (0-32 days) which underwent a rapid increasing (0-10 days) and a slow 
increasing (10-32 days) phases. Shrinkage ratio of LB presented almost same during the initial  
3 days, and it differed obviously after that until the 10th day. The shrinkage ratio during 
rapid increasing phase of modified groups was less than control group and the minimum was 
the condition of HT combined WI. In the following slow increasing phase (10-32 days), the 
difference of swelling ratio became clearly, i.e., the maximum were about 2.44% for control group, 
following was HT group of 130°C-6h and 150°C-3h which were almost the same, 180°C-3h and 
the minimum of HT combined WI was about 1.68%. Compared with control group, swelling 
ratio of 180°C-3h HT and HT combined WI were reduced by 22% and 31% respectively during 
absorption process. These indicated that dimensional stability was improved significantly at these 
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two conditions. Increase in dimensional stability of HT wood is mainly attributed to decrease 
in hygroscopicity due to degradation of some hemicelluloses and an increase in condensed lignin 
bonds (Esteves and Pereira 2009). While the primary cause leading great dimensional stability 
enhancement for wood of HT combined WI may be wood empty space were filled with wax 
which functioned as an excellent bulking medium (Li et al. 2015).  

In Fig. 2, it was observed that the swelling ratio of LB also presented rapid decreasing and 
slow decreasing phase during the desorption process (32-54 days). The swelling ratio decreased 
rapid during the initial period (32-38 days) and then decreasing became slowly after that. In this 
phase, the swelling ratio of LB were also affected by modified conditions, i.e., the lowest was 
HT combined WI group, followed by 180°C-3h HT, and then 130-6h HT and 150°C-3h HT 
which were almost the same, and the highest was the control group. However, during the slow 
decreasing phase, swelling ratio of HT combined WI group was much less than others groups. 
There was little difference between control group and only HT groups. This indicated that the 
HT combined WI could significantly reduce wood hygroscopicity and improve its dimensional 
stability. 

 

Fig. 1: Curves of tangential swelling ratio of LB in humidity chamber and in indoor conditions.
 

Fig. 2: Curves of tangential swelling ratio of LB in humidity chamber. 

Dimensional change characteristics of large size boards in indoor condition 
Fig. 3 is the swelling ratio curves of LB in indoor environment which can show the real 

swelling and shrinking performance of wide boards in furniture or wooden products. Tab. 2 
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is the swelling ratios during the test. It was observed that the changes of all groups presented 
similar tendency which swell or shrink with seasonal climatic conditions of temperature and RH 
changing. The change of wood dimension is mainly influenced by the temperature and RH of 
the environment, among which the humidity plays an important role. LB swelled in higher RH 
season and shrunk in lower RH season. It can be seen in Fig. 3, the swelling ratios were great 
in December, July and October due to the high RH in these months. In contrast, dimensions 
changes of LB were small in March, April, May and June, because the RH varied few in these 
months. As seen in Fig. 3 and Tab. 2, the swelling ratios of LB were affected by treated conditions. 
The lowest was the HT combined WI group, which were much less than other HT and control 
groups and following were 180°C-3h HT, 150°C-3h HT groups. The maximum swelling ratio of 
HT combined WI group and 180°C-3h HT group at indoor condition decreased by 29% and 13% 
respectively compared with control group. The swelling ratio of 130°C-6h HT group and control 
group were almost same, this indicated that there was no effect on improvement of dimensional 
stability at this temperature condition. However, the dimensional stability of LB at 130°C-6h 
HT was obviously improved after wax impregnation. This showed that WI could significantly 
improve wood dimensional stability. The results coincide with the report in previous study (Li 
et al. 2015). It was also observed in Tab. 2 that the range of swelling ratio of HT combined WI 
group was 0.25%, which resulted in the maximum dimension variation only within 1 mm for  
415 mm wide board in a year. This dimension variation fully meets the requirement of 
manufacture and can prevent furniture components cracking and deformation.   

Tab. 2: Tangential swelling ratio of LB in indoor conditions (%).

Group Dec Mar Apr May Jun Jul Aug Oct Nov Mean Max Min Range
Control 1.14 0.74 0.72 0.69 0.74 0.96 0.72 0.94 0.86 0.83 1.14 0.69 0.45
130°C-6h 1.06 0.77 0.69 0.69 0.77 0.99 0.74 0.97 0.89 0.84 1.06 0.69 0.37
150°C-3h 0.94 0.72 0.67 0.67 0.72 0.94 0.69 0.84 0.79 0.78 0.94 0.67 0.27
180°C-3h 0.89 0.67 0.65 0.62 0.67 0.85 0.65 0.75 0.72 0.72 0.89 0.62 0.27
Heat + wax 0.74 0.52 0.49 0.49 0.54 0.69 0.49 0.69 0.64 0.59 0.74 0.49 0.25

 

Fig. 3: Curves of tangential swelling ratio of LB in indoor conditions.
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Swelling comparison of large size boards and small samples
Because the swelling ratio of LB in December was the biggest in a year, it is compared with 

small samples in Fig. 4. 

Fig. 4: Comparison of tangential swelling ratio of LB and small samples in December.

The swelling ratio of small samples was compared with the value in previous study of wax 
impregnation to Aniba rosaeodora (Li et al. 2015), they were almost the same. It was observed 
that swelling ratio of all groups of LB were smaller than that of small samples, this indicating 
the swelling ratio was affected by dimensions of material. It may be attributed to the anisotropic 
properties of wood swelling, i.e., wood swells greatest in tangential direction, followed by radial 
direction which is about half the tangential direction and the lowest in fiber direction. Growth 
rings of small samples are almost parallel to tangential direction, this leading to biggest swelling. 
However, LB were glued jointed with pieces of boards, the growth rings presented multiple 
angles to tangential direction which restrict overall swell, thus swelling in tangential was reduced 
for LB. In production process, swelling amount of wooded product components was normally 
calculated based the swelling ratio of small samples. However, the factually amount of swelling 
are smaller than that calculated according to the results above and special attentions should be 
paid to determination of components swellings. In addition, the swelling ratios of treated wood 
were reduced for both LB, while the difference of small samples was obvious. The possible reason 
is the restriction to swelling of anisotropic properties of LB. 

Wax distribution in wood
Microstructures of the HT wood and the distribution of the impregnated wax within the 

wood were observed by SEM. Comparing with control group, although HT at 180- 3h, the cells 
of wood fiber and axial parenchyma could be clearly seen, and cell deformation and obvious 
attachments inside the lumens were invisible. Fig. 5c shows the cross section of specimen tested 
with HT combined WI. It was observed clearly that wax mostly presented a massive distribution 
and distinctly shaped droplets on the surface which were marked with arrows added points, cells 
were covered partly with wax, the overall distribution were not even. Similar distribution of wax 
was also reported by Qian et al. (2019). This figure indicated that cell cavities were filled with 
wax after treatment, which leading to the rate of hygroscopicity and water absorption of wood was 
reduced (Papadopoulos and Pougioula 2010) and the improvement of wood dimensional stability. 
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Fig. 5: The SEM of the control group and treated groups. (a) Control, (b)180°C-3h, (c) Heat + wax.

CONCLUSIONS

In order to improve the dimensional stability of Pterocarpus macrocarpus wood, large size 
boards were treated by heat and heat combined wax impregnation and the tangential swelling 
ratios of treated wood were compared under various RH conditions. The primary results are 
summarized as follows.

The tangential swelling and shrinking of LB for both control group and treated group 
underwent a rapid followed by slow increasing and a rapid followed by slow decreasing process in 
humidity chamber absorption condition of 40°C-90% RH and desorption condition of 40°C-35% 
RH respectively. Compared with control group, tangential swelling ratio of HT combined WI 
was the smallest, and the following was of 180°C-3h HT group, the maximum reducing was 31% 
and 22% respectively during this process. The performance of swelling of treated groups were 
obviously different from control group during absorption condition, while only HT combined WI 
group was clearly different from others including control group. In contrast to humidity chamber 
condition, tangential swelling and shrinking in indoor condition became slow and presented 
small f luctuations in a year. The swelling ratio of HT combined WI group was the lowest which 
was obviously different from other HT groups. The maximum swelling ratio of HT combined 
WI group and 180°C-3h HT group at indoor condition decreased by 29% and 13% respectively 
compared with control group. The swelling ratio was affected by size of samples, LB showed 
smaller welling ratio than small sample. Wax filled in cell lumens, showing uneven distributions, 
which resulted in decreasing in hygroscopicity rate of wood. HT combined WI was an effective 
method on improvement of dimensional stability wood.
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