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ABSTRACT

This study investigates the effect of silica on sugarcane bagasse (SCB) and softwood (SW) 
cellulose. Cellulose was extracted from raw SCB and SW chips using a three-step process, namely 
thermal pre-treatment, alkaline treatment and bleaching treatment. Alkali treated cellulose was 
then subjected to silica surface modification using the solvent exchange method. The effect of 
silica modification on SCB and SW cellulos was investigated using X-ray diffractions analysis 
(XRD), Fourier transform infrared (FTIR) spectroscopy and optical microscope (OPM) 
techniques. Both the FTIR and XRD results confirm successful extraction of cellulose from both 
raw fibers and addition of silane functional groups in the cellulose surface. XRD patterns of all 
samples revealed typical spectra for natural fibers corresponding to crystalline peaks of cellulose 
and undissolved amorphous hemicellulose respectively. SCB and SW showed similar increasing 
patterns of crystallinity with nanosilica surface modification. The surface morphology results 
showed that both SCB and SW cellulose modified with silica were swollen and displayed small 
particles agglomerating on the surface of the fibers. The solvent exchange method proved to be 
a successful method for modifying SCB and SW cellulose with nanosilica. It also proved to be 
cost-efficient and time-efficient.
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INTRODUCTION

There is a significant research interest in the application of natural fibers in the field of 
polymer composites due to their many advantages. Natural fibers are abundant, renewable, 
non-abrasive, non-toxic and biodegradable as compared to synthetic fibers. They also possess 
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outstanding mechanical properties with varying morphology and good surface properties 
(Sequeira et al. 2009, Jacob et al. 2005, Eichhorn et al. 2001, Sibuya et al. 2018). Amongst 
the natural fibers, sugarcane bagasse (SCB) is one of the major agricultural residues that have 
gained popularity lately and an exceptional fiber for composites reinforcement because of low 
modification cost and high quality composites attained. SCB is a versatile fibrous agricultural 
residue that is obtained after extraction of ‘ juice’ from sugarcane, that can be can be converted to 
paper, feedstock, biofuel amongst others. It can also be used as an absolute substrate for microbial 
processes to produce electricity, chemicals, enzymes, and other valuable products. SCB contains 
about 40-50% cellulose, 25-30% of hemicellulose and about 20-25% of lignin content. It has been 
used for reinforcement for thermoplastics in the automotive, construction and food packaging 
industries (Loh et al. 2013, Mulinari et al. 2009, Ahmed et al. 2012). 

Soft wood (SW) is one of the most used natural fibers in thermoplastic reinforcement. The 
main components in SW are cellulose, lignin and hemicellulose which account for 55%, 11% 
and 26% respectively. Wood elements employed in polymer composites vary in shape and can be 
used in combinations or alone. The shape and wood fiber size determine the properties of the 
final product such as surface chemistry. The strength of wood polymer composites depends on 
factors like chemical compositions, density, thickness, fiber content, and the type of bonding 
agent (if any). Softwood has applications in architectural woodwork, composite materials, 
construction and furniture fields (Terrett et al. 2019, Ashori, 2008). Cellulose is one of the highly 
abundant natural polymers found in earth. It can be extracted from several sources including 
bagasse, wood, cotton, pineapple leaves and sisal fibers amongst others. Structurally, it consist 
of D-anhydroglucopyranose units which are joined to form a linear molecular chain. Cellulose 
extraction is normally a three-step process, i.e. thermal pre-treatment, alkaline treatment and 
bleaching treatment. The alkalization step removes non-cellulosic components such as lignin, 
hemicellulose, waxes and pectin. The treatment increases the roughness of the fiber surface 
resulting in the improved adhesion between the fibre and the matrix (Zhao et al. 2013, Barra  
et al. 2006, Linganiso et al. 2019).

Silica (SiO2) is mainly found as quartz in nature and in various living organisms. Silica as  
a filler is known for enhancing mechanical strength, thermal stability and transparency. It makes 
cellulose composites hydrophobic and resistant to structural deformation (Litschauer et al. 2011, 
Ha et al. 2019). Cellulose modification results in morphology changes and increases in hydroxyl 
groups. Hence, cellulose surface modification enhance surface tension, wettability, swelling, 
adhesion and compatibility with polymers (Ashori  et al. 2008, Wei et al. 2015). The preparation 
of cellulose-silica composites can be achieved in various ways such as acid-catalyzed hydrolysis, 
sol-gel method or using precursors like tetraethoxysilane (TEOS) (Cerchiara et al. 2018, Maleki 
et al. 2014) amongst others. One of the cheap and simple methods of preparing cellulose-silica 
composites is the solvent exchange method, which substituted the need for surfactants when 
incorporating cellulose fibers into non-polar polymers. This method uses the percolating 
approach to prepare the cellulose surface for effective facial interaction with hydrophobic silica 
and allow the incorporation of composite formation without the use of catalysts and crosslinking 
agents. The cellulose fiber assembles to a three-dimensional template, then the percolating 
structure is then filled with nanosilica. Cellulose-silica composite normally takes days and 
energy to synthesize it.  However, it only takes a few hours using the solvent exchange method 
because it is a one-step energy-efficient method. This method yields a composite with reduced 
moisture absorption, enhanced thermal properties and dimensionally stability (Rodríguez-
Robledo et al. 2018). In a study by Barra et al. (2006), the treatment of sisal fiber with silica 
showed improvement in tensile strength, impact strength and tensile modulus. There are also 
changes in morphology and porosity of the cellulose-silica composite depending on the silica 
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content. Silica-based composites can be used to coat implants and medical products as biosensors, 
biocatalysts, and matrix for a controlled release of drugs (Hou et al. 2010, Xie et al. 2009). Due to 
their antifungal activity property, such composites can be used to avoid the growth of Aspergillus 
Versicolor which degrades paper artwork such as books, manuscripts, paintings, etc. (Rodríguez-
Robledo et al. 2018, Cerchiara et al. 2018).

MATERIALS AND METHODS

Sugarcane bagasse was obtained from Tongaat Hullets sugar mill in Felixton, South 
Africa. Softwood (Pinus patula) chips was obtained from the nearby farm in Empangeni, South 
Africa. Silica (SiO2), sodium hydroxide (NaOH), sodium chlorite (NaCIO2), glacial acetic acid 
(CH3COOH), acetone (C3H6O), and ethanol (CH3COOH) were purchased from Laboratory 
consumables, South Africa. All chemicals were used without further purification.

Thermal pre-treatment
SCB and SW feedstock were separately subjected to thermal pre-treatment. The feedstock 

was boiled with water for an hour on a hot plate. The mixture was removed from the hot plate 
and rinsed with distilled water. The process was repeated four times to ensure that impurities and 
any dirt trapped were effectively removed.

Alkaline treatment
The thermally pre-treated SCB and SW were treated with an alkaline solution (2% NaOH) 

prepared by dissolving 100 g NaOH in 5L distilled water. The mixture was boiled for an hour 
and rinsed with distilled water. The process was repeated four times.

Bleaching
The buffer solution was prepared by adding 54 g NaOH, 150 mL acetic acid, and distilled 

water in 2L volumetric f lask. The solution of sodium chlorite (3.5%) was prepared by dissolving 
70 g NaIO4 salt in 2L distilled water. The buffer and sodium chlorite solution were mixed in 1:1 
volume ratio before used. Alkali pre-treated fibers were boiled the solution for an hour before 
rinsed with distilled water. The same process was repeated four times. 

Solvent exchange method 
Firstly, water was added in droplets into cellulose fibers while stirring for 15 min to form  

a gel. The gel mixture was added to ethanol in 1:1 volume ratio and stirred for about an hour 
before acetone was added drop wise in a 1:2 volume acetone-water ratio. Stirring was continued 
for 3 hours more before nanosilica which was previously immersed in acetone was added. The 
mixture was further stirred for 10 min. Lastly, the mixture was sonicated for 20 min at an 
ultrasound bath of 40 kHz, maintaining the temperature below 40°C before the resultant product 
was dried at 60°C in an oven.

Characterization techniques
Optical microscope (OPM)

The powdered samples of cellulose and its silica composites were analysed using the Zeiss 
optical microscope. The morphology was captured using a digital system. A small amount of each 
sample was spread on a glass slide and stamped with a coverslip. 
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X-Ray diffraction analysis (XRD)
The samples were analysed using X-ray diffractometer (D8-Advance Bruker AXS GmbH) 

at room temperature (RT) with a monochromatic CuKα radiation source (λ = 0.1539 nm) in the 
step-scan mode with a 2θ angle ranging from 0° to 60° with a step of 0.04 and scanning time of 
5.0 min. 

Fourier transform infrared (FTIR) spectroscopy
The spectra of all samples were carried out on a Perkin-Elmer FTIR spectrophotometer 

using a standard ATR cell. The gauge was adjusted to 90 for sufficient contact. All samples were 
scanned over the wavenumber (450 - 4000 cm-1).

RESULTS AND DISCUSSION

Spectral analysis
The FTIR spectra of SCB and SW celluloses as prepared are shown in Fig. 1. Both spectra 

showed the common peaks associated with cellulosic materials at 3336 cm-1 (OH-stretch),  
2890 cm-1 (C-H asymmetric stretch), 1560 cm-1 (C=C) aromatic asymmetric stretch), 1031 cm-1 
(C-O vibrations), and 560 cm-1 (C-OH out of plane) as reported in the literature (Maeda et al. 
2006, Rodríguez-Robledo et al. 2018).

			   a) 			               b) 
Fig. 1: The FTIR spectra of a) SW cellulose and SW/SiO2 b) SCB cellulose and SCB/SiO2.

 Moreover, the peaks linked to aromatic skeletal vibrations of lignin and hemicelluloses at 
1241 cm-1 and 1722 cm-1 were reduced and are almost invisible. This might indicates the complete 
removal of lignin and hemicelluloses from SCB and SW. With the introduction of nanosilica in 
both SCB and SW celluloses, there are evident shifts in peak positions and intensities. The peaks 
at around 1315 cm-1 only appear in the prepared SCB and SW celluloses spectra corresponding 
with CH2 vibration functional groups (Jacob et al. 2005). The peak at 1367 cm-1 only appear 
in the modified SCB and SCW cellulose spectra. This peak correspond with C-H bending 
in the plane (Sibiya et al. 2018, Zhao et al. 2013, Linganiso et al. 2019) and could symbolise 
introduction of a new functional group resulting from silica modification. In addition, the peak 
at 435 cm-1 attributed to Si-O-Si bending only appears in modified cellulose which is evidence 
that nanosilica functional groups were added on the cellulose surface (Rodríguez-Robledo et al. 
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2018, Cerchiara et al. 2018, Maleki et al. 2014). The -OH from silanol absorbs around 1030 cm-1 
and 3300 cm-1 might be the reason for bigger intensities observed in modified cellulose. These 
peaks are more pronounced in SW cellulose as compared to SCB cellulose. This may be due to the 
reduction in hydrogen bonding in cellulosic O–H groups, thereby increasing –OH concentration 
due to high energy of O–H bonds

 
X-Ray diffraction analysis

Fig. 2 is showing the diffractograms of SCB and SW celluloses as prepared and modified 
respectively. Both prepared and modified fibers display typical spectra for natural fibers with 
peaks around 16°, 23°, and 35° corresponding to amorphous cellulose I, crystalline cellulose II and 
undissolved amorphous hemicellulose respectively (Pothan et al. 2002, Xie et al. 2009). With the 
introduction of silica to SCB cellulose, there were minor changes in peaks positions observed and 
an increase in peak intensities. The minor peaks shift for SCB may be due to disorder caused by 
modification of fiber and might indicate an increase in the interplanar distance.  The intensity 
increase could suggest that the nanosilica modification improved the crystallinity of SCB. The 
same trend was observed with SW cellulose. 

Fig. 2. The diffractograms of SCB cellulose, SCB/SiO2, SW cellulose and SW/SiO2.

Tab. 1: The crystalline indices and degree of crystallinity for unmodified and modified (SCB and SW) 
cellulose. 

Sample Peak height CI (%) Deconvolution Cl (%)
SW cellulose AP 42 63
SW/SiO2 43 64
SCB cellulose AP 39 62
SCB/SiO2 40 63

Tab. 1 showed the crystallinity index (CI) estimated using the deconvolution and peak height 
methods (Ciolacu et al. 2011, Johar et al. 2012, Kim et al. 2013). For both SCB and SW cellulose, 
there was an increase in crystallinity with the introduction of silica as expected. The differences 
in crystallinity index values for both SCB and SW might be due to differences in chemical 
compositions and exposure of cellulose after alkali treatment. It is clearly evident that the addition 
of nanosilica particles improves the crystallinity of both SCB and SW cellulose.
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Optical microscope
The optical microscope images of unmodified and modified SCB and SW cellulose are 

displayed in Fig. 3. It could be seen that both SCB and SW unmodified fibers are thin and 
longer as compared with their modified counterparts. Both SCB/SiO2 and SW/SiO2 are swollen 
and display dusty small particles agglomerating on the surface of the fibers (see arrows). Similar 
results were also reported in modification of natural fibres (Mulinari et al. 2009, Maeda et al. 
2006). 

 

Fig. 3: The optical microscope images of: a) SCB Cellulose, b) SCB/SiO2, c) SW Cellulose and d) SW/
SiO2 at 10 × 0.22 magnification.

 
According to Pothan et al. (2002), the swelling of the fiber leads to a transfer of the 

electrochemical double layer and the shear plane of the fiber to the electrolyte solution. Moreover, 
the fiber length for both SCB and SW were not affected by modification. In fact, the longer fibers 
(5 mm) have a property to allow high stress to be transferred to reinforcement and that contributes 
to its superior mechanical properties (Loh et al. 2013).

CONCLUSIONS

The study investigated the effect of silica on sugarcane bagasse (SCB) and softwood (SW) 
cellulose properties. FTIR and XRD results confirmed that cellulose was successfully extracted 
from SCB and SW using the alkali treatment. The surface modification of both SCB and 
SW cellulose were performed successfully using the solvent exchange method. FTIR analysis 
confirmed that silica functional groups were successfully added onto the surface of SCB and SW 
cellulose. There were evident shifts in peak positions and intensities with the introduction of 
silica. New peaks were detected at 1367 cm-1 and 435 cm-1 signaling that nanosilica functional 
groups were added on the cellulose surface. XRD patterns showed minor changes in peaks 
positions and an increase in peak intensities with the introduction of silica. There was also an 
increase in crystallinity index estimated using the deconvolution and peak-height method for 
both modified SW and SCB cellulose. The surface morphology displayed fiber swelling with 
introduction of silica, which has impact on mechanical properties of the fiber and the resultant 
composites. The solvent method proved to be cheap, simple and time efficient for use in cellulose 
modification.
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