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ABSTRACT

In this paper, magnesia-bonded wood-wool panel was subjected to different times of wet and 
dry cycle to analyze their effects on the physical properties and the sound absorption property 
of the panel from macro and micro perspective. The results showed that with the increase of the 
wet and dry circle times, both MOE and thickness swelling decreased and the average absorption 
coefficient of the specimen increased.
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INTRODUCTION

Magnesia-bonded wood wool panel (MWWP) is a panel made of wood-wool as reinforcing 
material bonded with hydration product after the reaction between magnesia (main content: 
MgO) and MgCl2 solution (Na et al. 2012, 2013, 2014b, Wang et al. 2013a,b, Simatupang and 
Geimer 1990). The hydration product is indeed the magnesium oxychloride cement (Na et al. 
2012, 2013, 2014a, 2018). Magnesium oxychloride cement is a rigid gas cementing material, with 
advantages of fast condensation, high strength, low density, fire resistance etc. However, changes 
of temperature and humidity will greatly affect the surface stability of magnesium oxychloride 
cement, causing excessive moisture absorption, back to halogen, eff lorescence and so on, and 
deteriorating physical and mechanical properties of magnesium oxychloride cement products.

Magnesium oxychloride cement is mainly composed of two alternate salt crystals (Zhu  
et al. 1994) of 5Mg(OH)2 • MgCl2 • 8H2O and 3Mg(OH)2 • MgCl2 • 8H2O produced by the 
reaction of magnesium oxide and magnesium chloride. The two complex salt crystals intertwined 
joined together with better crystalline rod or gel-like crystals. 5-phase, 3-phase crystals are 
fibrous, phase 5, showing the rod-shaped is comparatively thicker than 3-phase which presented 
as needle-like. In terms of crystal morphology (Matkovic and Yong 1973), 5Mg(OH)2 • MgCl2 
• 8H2O is better than 3Mg(OH)2 • MgCl2 • 8H2O and shows higher strength and stability. 

doi.org/10.37763/wr.1336-4561/65.2.271282 
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But when it is put in water or in a long-term high humidity environment, the 5-phase crystal 
will present a poor stability and break free MgCl2. However, studies have shown that in the  
high-temperature water vapor (Deng 2003, Deng and Zhang 1996), free MgCl2 can generate 
Mg(OH)Cl and precipitation, and thus effectively improve the MOC hygroscopic (Pan et al. 
1984, Tong 1995). The crystal morphology of Mg(OH)2 is a large bulk crystal (Chen et al. 1996), 
showing a layered structure. So, when the proportion of MgO, MgCl2 and H2O is appropriate, 
the 5 phases and Mg(OH)2 with high content and stability, magnesia-bonded wood-wool panel 
will have the highest intensity accordingly (Jiang et al. 2002). In addition, since the excess MgO 
can take further reaction to form Mg(OH)2, therefore a reasonable increase in moles of H2O will 
also help to enhance the panel strength.

MATERIAL AND METHODS

Since magnesia-bonded wood-wool panel is an new material, there is no standard on water 
sorption test of such material, considering the obvious impact of dry and wet cycles on its 
water resistance, so the experiment followed china aerated concrete wet-dry cycle test standard  
GB / T11975-1997 (China Standards Press 2014).

First, put the specimens in electric blast oven at (60 ± 5)°C , and dried to constant mass; taken 
out and cooled 20 min at temperature of (20 ± 5)°C; put the specimens in water at temperature of 
(20 ± 5)°C; kept the specimen 30 mm below the water surface; removed the specimen 5 min later; 
put them in the air for 30 min; after then kept the specimens in the oven at (60 ± 5)°C for 7 h.  

RESULTS AND DISCUSSION

Fig. 1 showed, after wet and dry treatment, the cross-sectional structure became obviously 
looser than before, and the wood-wool swelled. To further study changes of the crystalline phase 
after wet and dry treatment, SEM and XRD would be used in the following study. 

  

Fig. 1: Cross-sectional view of wood-wool panel before and after wet and dry treatment.

XRD analyses
Samples from magnesia wood-wool panels were prepared before /after wet and dry treatment 

respectively. Magnesium oxychloride cement was ground and those with the size of less than 
200 mesh were kept. The microscopic analysis was made by X-ray diffraction (XRD) analyzer, 
the results were obtained as follows, in which: 1-MgCO3, 2-MgO, 3-Mg(OH)2, 4-5Mg(OH)2 • 
MgCl2 • 8H2O, 5-3Mg (OH)2 • MgCl2 • 8H2O.
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Fig. 2: XRD spectrum of untreated magnesium 
oxychloride cement panels with n = 0.

Fig. 3: XRD spectrum of treated magnesium 
oxychloride cement panels with n = 2.

  

Fig. 4: XRD spectrum of treated magnesium 
oxychloride cement panels with n = 5.

Fig. 5: XRD spectrum of magnesium oxychloride 
cement panels with n = 8.

By comparing XRD spectra results of magnesium oxychloride cement under four states, it 
could be found that MgCO3 (magnesite), MgO (periclase), Mg(OH)2, five complex salt crystal 
phase and three-phase double salt crystals were the four main phases (Ji et al. 1995) existing 
in magnesium oxychloride cement with different times of wet-dry cycle process. By comparing 
Figs. 2, 3, 4, 5, it could be found that the intensity of diffraction peaks at the position of  
2θ = 38.48°, 22.05° and 10.99° of the 5-phase were greatly enhanced after 2 wet-dry cycles. 
With increase of the wet and dry cycle processing times increase, the peak intensity decreased, 
the peak shape gradually widened, which was especially obvious at 2θ = 38.48° in Fig. 4 and  
5 comparing to Fig. 2 in which the peak appears thin and tall. The results showed that through  
2 wet-dry cycles, 5 complex salt crystal phase had been changed with higher degree of crystallinity 
and higher content, but the rules of the crystal surface became poorer. With the increase of wet-
dry cycle process, the content of three complex salt crystal phase in magnesium oxycholoride 
cement decreased, and even close to disappear in some diffraction angle because 3-phase was 
unstable .The related studies showed when the molar ratio of MgO to MgCl2 is 4 or 5, cement 
hydrates was unstable after f looding due to the dissolution and phase transformation would lead 
to decomposition of 3-phase hydrate (Guan and Ba 2009). In summary, 5 complex salt crystal 
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phase (Xia et al. 1994) in magnesium oxychloride cement increased gradually with increase of the 
wet and dry cycle p times, The crystal grown no better than those were not suffered the wet and 
dry cycle treatment. This was one of main reasons that the strength of panel was decreased with 
increase of wet and dry cycle times.

SEM analyses
Specimens were taken from magnesium oxychloride cements with different times of wet-dry 

cycle process, and analyzed by scanning electron microscope (SEM). The results of specimens 
with  n = 0, 2, 5, 8 (times of wet and dry cycle) are shown as follows.

	

Fig. 6: SEM micrograph of magnesium wood wool panels with n = 0.

Fig. 6 showed that the surface morphology of magnesium oxychloride cement with  
n = 0 presented colloidal showing topography, mainly formed by layered, rod-shaped and needle-
shaped structure. 5 phasewas rod-like; t 3 phase was needle-like and Mg(OH)2 is bulk crystal 
with layered structure (Shuxing 2011). The strength and stability of a 5-phase crystals were better 
than Mg(OH)2 crystal phase ,thus illustrated that there were lots of 3-phase, 5-phase complex salt 
crystals and Mg(OH)2 crystalline phase. So under normal circumstances, the higher the content 
of 5-phase crystals were, the greater the intensity of magnesium oxychloride cement was.
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Comparing Fig. 6 and Fig. 7, it can be found that the layered structure on the surface of 
magnesium oxychloride cement surface reduced after 2 times wet and dry cycles. That means, 
that the Mg(OH)2 phase was reduced. Comparing picture of ×8000, it could be found when the 
pore diameter increased until that the cement structure became relatively loose, but it also made 
the material porosity increase, thus the sound absorption property of the panel was increased.

Fig. 7: SEM micrograph of magnesium wood wool panels with n = 2.

Comparing 2000 times photos of Fig. 6, 7, and 8, it could be found that the layered structure 
on the surface of magnesium oxychloride cement surface was significantly reduced, that meant, 
the Mg(OH)2 phase was greatly reduced, but the 5-phase crystal rod increased obviously which 
should have improved the physical strength of the panel.

However, comparing 2000 times and 8000 times photos in Figs. 6 and 8, the following 
results were found: 5-phase crystal growth basically in holes or voids, and grow radially from the 
hole edge to centre, or radiate outwardly from the pores. The MgCl2 solution and MgO particles 
can easily fill holes and voids, and interaction occurred therein, providing sufficient space to 
facilitate the growth of 5 phase. This kind of radial crystal in holes had no contribution to the 
strength of magnesium oxychloride cement because this radial crystal did not form the network 
crystal structure. On the contrary, the existence of such holes reduced the strength of magnesia 
cement.
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Fig. 8: SEM micrograph of magnesium wood wool panels with n = 5.

 	

Fig. 9: SEM micrograph of magnesium wood wool panels with n = 8.

Comparing 4000 times photos of Fig. 8 and Fig. 9, it could be found that in both photos, 
layered structure became rare, but the later structure was obviously looser than the former. 
Hardened cement formed by composite-magnesia-cement materials was similar to other kinds 
of hardened-bodies. The formation of sufficient stable hydrates and the well intersection crossed 
each other, and a continuous, dense crystalline structure of cement in the whole space, these two 
were the prerequisites ensuring the cement’s physical strength. The loose structure of 5 phase 
could not cross over with each other, so even the high 5 phase content could not bring high 
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strength, wood moisture expansion which led to hardened-body cracking is another important 
reason (Tu 1996).

Analysis of thickness swelling
From Fig. 10, it could be found that, the longer the panel was soaked, the higher the panel 

thickness swelling would be. This showed that the water resistance property of magnesium 
oxychloride cement was poor. Combining the XRD and SEM results, the following reasons could 
be found: on the one hand, the magnesium oxychloride cement hydration products were unstable 
in water, especially the 3-phase, which could be dissolved in water. The other reason was the 
wood-wool’s property of moisture absorption. When the wood-wool’s expansion reached a certain 
level, the expansion stress would exceed the MOC's internal stress, and result in the destruction 
of the internal structure of magnesium oxychloride cement, and the decrease of MOC's physical 
and mechanical properties, thereby reducing the binding force to the wood fiber. Thus the 
improvement of the panel’s water resistance heavily depended on the improvement of magnesium 
oxychloride cement’s water resistance.
	

 

Fig. 10: Effects of wet and dry cycles on thickness swelling.

Further analyse showed that the specimen had not been handled with wet and dry cycles. 
Its thickness swelling ratio increased rapidly at the initial five hours, after which, the value rose 
slowly, while this value of those specimen being handled was relatively smaller with time going 
even their thickness swelling value was larger than the former. This was because the three-phase 
hydrates hydrolyzed in soaking process, then in the drying process, those active MgO which did 
not react would combine with free H2O to generate Mg(OH)2 crystals. With the increase of time, 
the content of 5 phase increased which was relatively stable than 3 phase, so the following soaking 
process had little effect on its thickness swelling ratio. Thus, the impact of wet and dry cycles on 
the panel’s thickness swelling ratio came mainly from the wood wool’s hygroscopic expansion and 
the decomposition of some hydration products in the cement.

Mechanical performance analysis
Fig. 11 showed that with the increase of wet and dry cycles, the panel showed a nonlinear 

decrease of MOE. The slope of the curve with n  ≤  2 was significantly greater than 2 < n ≤ 15, 
which indicated that MOE of the panel sharply declined after 2 cycles, and with increase of the 
circle time, the rate of decline decreased. This change trend was consistent with the change of 
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thickness swelling, which also indicating that the poor water resistance of magnesium oxychloride 
cement was the main reason leading to a sharp decline in the MOE of the panel after wet and dry 
circle. The following relationship between the plate elastic modulus (Eb) and the times of wet and 
dry cycle (n) was established by ORIGIN nonlinear fitting:

    
	 (1)

where:	 Eb- elastic modulus, (MPa),
	 n- times of wet and dry cycle, n ≤ 15.

Fig. 11: Effects of wet and dry cycles on MOE.

Fitting results are analyzed as follows. Tab. 1 showed the correlation coefficients between Eb 
and  n = 0.972, indicating high correlation between them. At the same time, the table showed the 
value of standard deviation and fitting deviation were big because of the limited times of wet and 
dry circle. But in the actual use, the requirements about MOE of the panel itself was not high, 
and furthermore, MOE of the panel was able to meet the standard requirements for wood-wool 
panel even with n = 8. So the simulation results were applicable for a rough estimate of MOE of 
the panel value with n ≤ 15 in engineering application.		

Tab. 1: Analysis of fitting results between MOE and wet and dry cycles.

Y = A + B * X
Parameter Results Deviation

A 1633.856 208.429
B -559.371 158.837
Correlation coefficient R SD Number of parameters (N) P
0.972 97.181 5 < 0.027

Analysis of sound absorption properties 
A large number of experimental specimens were used, and the following four typical sound 

absorption characteristics were found.
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Fig. 12: Four typical sound absorption properties.

In Fig. 12a: (1) the peak value of absorption coefficient before/after wet and dry cycles were at 
f = 1600 Hz, f = 1200 Hz respectively, that was, after wet-dry cycle the panel’s sound coefficient 
peak value shifted to lower frequency; (2) the panel’s sound absorption performance was poor 
when f  ≤ 600 Hz.

In Fig. 12b: (1) both the peak value of absorption coefficient before/after wet and dry cycles 
were at f  = 800 Hz; (2) with the increase of n, sound absorption coefficients at the stage of  
f  ≤ 800 Hz continued to improve which was less clear at high frequencies.

In Fig. 12c: (1) there were two peak values of absorption coefficient before /after wet and 
dry cycles, and the first peak value transferred from 600 Hz to 800 Hz after wet and dry circles. 
Both the valley values appeared at 1000 Hz; (2) the panel’s sound absorption performance was 
poor when f  ≤ 600 Hz. (3) before the stage of f  ≤ 1000 Hz, the absorption coefficient increased 
substantially with the increase of n.

In Fig. 12d: (1) there were two peak values of absorption coefficient before/after wet and dry 
cycles, and the first peak value transferred from 800 Hz to 1250 Hz after wet and dry circles;  
(2) the panel’s sound absorption coefficients increased with the increase of n, and the value 
decreases rapidly when  f = 2000 Hz.

The following two points were reached by comparing this four figures: (1) poor low 
frequency sound absorption performance were presented with the increase of n, but the trend 
was not apparent at the frequency channel of high frequency; (2) The main difference between 
the four typical sound absorption characteristic diagrams was that the first two contains only one 
peak while the latter two peaks.
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Mechanism analysis: during the process of wet and dry cycle, the crystal hydration product 
was hydrolyzed and generated Mg(OH)2 when the panel was soaked in water because of its high 
solubility in water, and the Mg(OH)2 was a bulk crystal (Yang 1999) with layered structure 
and hardened body much lower in intensity which was composed of the rod-like gel 5-phase 
crystals and the sharp needle-shaped 3-phase crystals. On the other hand, wood-wool’s moisture 
expansion would result in swelling stress, when 5-phase and 3-phase crystals dissolved, the 
strength of the panel was lower than the swelling stress, then the panel’s deformation was 
produced, thus the panel’s strength decreased rapidly. Therefore, the strength loss of magnesium 
oxychloride cement wood-wool panel was not only due to the physical action of water, but also 
mainly led by the solubility characteristics of 5-phase and 3-phase crystals and wood-wool’s 
swelling stress (Delany and Bazley 1970).

CONCLUSIONS

This paper examined effect of wet and dry cycle on thickness swelling, MOE and normal 
sound absorption coefficient of the panel from the macro and micro perspective and explored 
oxychloride changes of microstructure of magnesium cement hydration product during the wet 
and dry cycle process. The following conclusions were shown as follows:

(1) After the wet and dry cycles, MOE and thickness swelling of the specimens decreased, 
and with the increase of wet and dry cycles, the decline decreased; the average absorption 
coefficient of the specimen increased, mainly due to the increased plate thickness and magnesium 
oxychloride cement in 5-phase crystal structure changes, the porosity increased. The absorption 
coefficient of the plate were particularly sensitive to the microstructure of the panel, But on the 
whole, the low-frequency sound absorption property of magnesia-bonded wood-wool panel was 
poor. At around 1000 Hz, sound absorption property of the panel was the best which applied to 
sound insulation for civil building.

(2) For the magnesium oxychloride cement before/after wet-dry cycles, the ARD and SEM 
results showed that: with the increase of wet and dry cycles, magnesium oxychloride cement 
Mg(OH)2 crystals gradually reduced, and finally almost completely disappeared, hydrolysis of 
3-phase double salt crystals  occurred in the soaking process, the five-phase double salt crystals 
gradually increased. However, after the wet and dry cycles, disappear of Mg(OH)2 in the panel 
crystals of ledto pore diameter in magnesium oxychloride cement larger, the crystal structure of 
a 5-phase complex salt crystals from the original high strength and gelled into a rod from gap 
around the radial centre of the structure to improve the strength of the panel, which led to an 
increase in 5-phase complex salt crystals, but the physical strength of the panel was reduced.
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