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ABSTRACT

This research investigates the prediction of modulus of elasticity (MOE) properties, which 
is the most important properties in many applications, of the oriented strand board (OSB) 
produced under different conditions (pressing time, pressing pressure, pressing temperature and 
adhesive ratios) by multiple regression, artificial neural network (ANN) and adaptive Neuro-
fuzzy inference system (ANFIS). Software computing techniques are now being used instead of 
statistical methods. It was found that the constructed ANFIS exhibited a higher performance 
than multiple regression and ANN for predicting MOE.Software computing techniques are very 
useful for precision industrial applications and, also determining which method gives the highest 
accurate result.
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INTRODUCTION

The timber resource has declined during the past several decades. Available timber source 
is now the smaller in diameter and lower in quality. One response to the decreasing supplies of 
high-qualitywood is an increase in demand for reconstituted wood products in which previously 
used smaller species or mill residues was processed into high-value wood composite materials 
(McKeever 1997). 

Oriented strand boards are a relatively new kind of wood-based panels that are defined in 
the European standard. Particle boards are classified depending on the size and orientation of 
their components (Rebollar et al. 2007). OSB panels are made of compressed strands lined up and 
arranged in three to five layers that are oriented at right angles to each other. And in some cases, 
the strands used in core layers are randomly oriented. OSB is generally similar to three-layered 
symmetric laminate. The outer layers of strands are orientated with the long dimension, and the 
inner layers are orientated at right angles to the outer layer (Green and Hermandez 1998).

Artificial neural networks resemble the human brain in two respects; the network through 
a learning process acquires knowledge, and the interconnection strengths known as synaptic 
weights are used to store the knowledge (Bekat et al. 2012) (Yılmaz and Kaynar 2011). Artificial 
neural networks are non-linear data-driven self-adaptive approaches, and they can identify and 
learn correlated patterns between input data sets and corresponding target values, even when the 
underlying data relationship is unknown. Artificial neural networks have been widely used to 
model complex and non-linear agricultural data (Xing-Mei et al. 2010). 

ANNs were used in many studies in the literatures. Artificial neural networks (ANNs) are 
computer algorithms whose structure and function are based on models. ANNs are currently 
being used in a variety of applications with great success in many applications (Vosniakos and 
Benardos 2007). Artificial neural network modeling has been widely used in the field of wood, in 
the wood recognition system (Tou et al. 2007, Marzuki et al. 2008), in the modeling of product 
recovery for trees Zhang et al. (2006), in the classifying of wood veneer defects (Packianather and 
Drake 2000), in the calculation of wood thermal conductivity (Xu et al. 2007), in the predicting 
fracture toughness of wood (Samarasinghe et al. 2007), in the prediction of bending strength and 
stiffness in western hemlock (Shawn et al. 2007), in the analysis of moisture in wood (Stavros 
and Hongwei 2007), the determination of modulus of rupture and modulus of elasticity on flake 
board (Yapıcı et al. 2009). 

The aim of this study is to determine the empirical relationships for estimation of MOE 
value of OSB, from different circumstances by using multiple regression, artificial neural network 
and ANFIS models. 

MATERIAL AND METHODS

Production of OSB panel’s
Scotch pine wood (Pinus sylvestris L.) was used for the production of the oriented strand 

boards (OSB). The strands' dimension in usage was approximately 80 long, 20 wide and 0.7 mm 
thick. First, the wood strands were dried to 3 % moisture content before adhesive was sprayed 
on them for three minutes. Then, adhesive material without wax, a solid content of 47 % liquid 
phenol- formaldehyde resin, was applied in 3, 6, 9 and 12 percent ratios based on the weight of 
oven dry wood strands. 

The pressing periods and pressing pressure were 3, 6 and 9 minutes under the 30, 40 and 50 
kg.cm-2 pressing pressure, respectively. The shelling ratio was 50 % for core layer and 50 % for 
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face layer, and density of the boards was aimed at 0.65 g.cm-3 density. OSB panels, which were 
dimensioned as 56 x 56 x 1.2 cm were made for experiments, in the 108 conditions. Hand formed 
mats were pressed in a hydraulic pressing. These panels were labeled from 1 to 108. All mats were 
pressed under automatically controlled conditions at 175±3, 185±3, 195±3°C, respectively. After 
pressing, the boards were conditioned to constant weight at 65±5 % relative humidity and at a 
temperature of 20±2ºC until they reached stable weight (TS 642/ISO 554, 1997). After then, 
MOE value was determined according to the related standard (TSEN 310, 1999). 

Experimental design and data analyses 
Zwick/Roell Z050 universal test device with capacity of 5000 kg and measurement 

capability of 0.01 N in accuracy was used in measurement of MOE values of test samples. In 
testing, loading mechanism was operated with a velocity of 6 mm.min-1. Data for each test were 
statistically analyzed. The analysis of variance (ANOVA) was used (α<0.05) to test for significant 
difference between factors. When the ANOVA indicated a significant difference among 
factors, the compared values were evaluated with the Duncan test to identify which groups were 
significantly different from other groups.

Multiple regression model construction
The general purpose of multiple regressions is to learn more about the relationship between 

several independent or predictor variables and a dependent or criterion variable. A linear regression 
model assumes that the relationship between the dependent variable and independent variable (s) 
is linear. The model takes form yi= β1xi + … + βpxip + ɛI= 1, …, n, where ́  denotes the transpose, so 
that xi´β is the inner product between vectors xi and β. Some remarks on terminology and general 
use: yi is called the dependent variable, xi are called independent variables. Usually, a constant is 
included as one of the repressors’ (Erper et al. 2011). In this search for the best circumstances to 
predict, the MOE values were conducted under different manufacturing conditions. 

Design of artifical neural network (ANN)
In this study, artificial neural network and ANFIS were applied by using the program 

MATLAB software (Matlab ® 7.11.0.584 (R2010b)). Determination of weights and biases is 
called training. We need training data to set for this. The training data set consists of input 
signals assigned with the corresponding target (desired output). The network training procedure 
is an iterative process. In each iteration weight's coefficients of nodes are modified using new data 
from training data set. Modification is calculated by using algorithm described as: E teaching step 
starts with forcing both input signals and training set. After this stage, we can determine output 
signal's values for each neuron in each network layer. 

In this study, Levenberg-Marquardt (LM) Algorithm was used to train network. The 
Levenberg-Marquardt (LM) algorithm is originally an intermediate optimization algorithm 
between the Gauss–Newton (GN) method and Gradient Descent (GD) algorithm (Arfken 
1985). It combines the speed of the Newton algorithm with the stability of the GD method.

For LM algorithm, the performance index to be optimized is defined as:

 			        (1)

where :	 ek  -  error vector,
	 w = (w1 w2 … w N) T consists of all weights of the network, 
	 dKP - the desired value of the kth output and the pth  pattern, 
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	 oKP -  the actual value of the kth output, pth pattern,
	 P -  number of pattern, 
	 K -  the number of the network outputs (Wilamowski et al. 1999).

Jacobien matrix can be computed as:

 			      (2)

Hessian matrix can be computed as: 

 			               	    (3)

where:	 µ - Marquardt learning parameter, 
	 I -  unit matrix. 

All weights of the network can be updated as:

 				                   (4)

where:  g - gradient vector can be computed as:

 		                 (5)

Realise that when µ is large the algorithm becomes steepest decline, while for small µ the 
algorithm becomes Gauss-Newton. The Marquardt-Levenberg algorithm can be considered a 
trust-region modification to Gauss-Newton (Hagan and Menhaj 1994).

Adaptive Neuro-Fuzzy Infrence System (ANFIS)
The adaptive network-based fuzzy inference system was first introduced by Jang. ANFIS 

incorporates the human-like reasoning style of fuzzy inference systems (FIS) by the use of input–
output sets and a set of IF–THEN fuzzy rules (Neshat et al. 2012).

Rule 1: IF x is A1 and y is B1, then f1=p1+q1+r1
Rule 2: IF x is A2 and y is B2, then f2= p2+q2+r2			        (6)

where:	 x and y -  inputs, 
	 Ai and Bi - fuzzy sets,
	 fi  -  outputs within the fuzzy region specified by the fuzzy rule,
	 pi, qi, ri  -  design parameters that are determined during the training process.

ANFIS architecture is as shown (Fig. 1) (Jang et al. 1997).
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Fig. 1: ANFIS architecture.

ANFIS has five layers architecture as described below:
Layer 1: The first layer of this architecture is the fuzzy layer. Every node i in this layer is an 
adaptive node with a node function.

				           (7)

where:	 x, y - the input to node i 
	 Ai, Bi - a linguistic label (such as “small” or “large”) associated with this node. 
	 In other  words, O1,i ; - the membership function of Ai, and it specifies the degree to    
	 which the given x satisfies the quantifier Ai.

Layer 2: Every node in this layer is a circle node labeled. This layer involves fuzzy operators; it uses 
and operator to fuzzyfication the inputs. The output of this layer can be represented as:

	  	       (8)
Layer 3: Every node in this layer is a fixed node labeled N, representing the normalized firing 
weights of each rule. The ith node calculates the ratio of the it rule’s firing weight to the sum of 
all rule’s firing weights:

			      (9)

where:	   - an outputs of this layer which are called normalized firing weights.
Layer 4: Every node in this layer is an adaptive node with a node function, indicating the 
contribution of the  its rule towards the overall output.

			     (10)

where:
- the output of layer 3,
{pi,qi,ri} - the consequent parameter set.

Layer 5: The single node in this layer is a fixed node labeled ∑.  This node computesthe overall 
output as the summation of all incoming signals.

	  		    (11)

ANFIS used to hybrid learning algorithm that integrates Gradient Descent and Least 
Squares Estimation algorithm. The hybrid algorithm is composed to a forward pass and  
a backward pass. 
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RESULTS AND DISCUSSION

The density and moisture content values of OSBs were determined according to the related 
standards (TS EN 323, 1999) (TS EN 322, 1999). The average density and moisture content 
of panels were obtained as 0.61 g.cm-2 and 7.2 %, respectively. It was found that the aimed and 
obtained values of these properties were within the ranges specified in the standards.

Tab. 1: Modulus of elasticity values of test specimens.

Manufacturing conditions
MOE (Nmm-2)

30 (kg.cm-2) 40 (kg.cm-2) 50 (kg.cm-2)

Pressing 
time (min.)

Pressing 
temperature 

(°C)

Adhesive 
ratio (%)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

3

175

3 2869.14 402.03 3924.31 1941.99 2221.24 240.00
6 5945.95 374.54 4153.64 809.89 2435.12 124.44
9 3033.56 252.03 3790.98 402.19 3300.45 320.60

12 2395.81 403.46 2179.14 199.85 3580.86 275.17

185

3 1830.01 321.05 3776.44 952.57 2382.31 112.80
6 4818.82 239.38 6541.96 310.83 5759.62 178.85
9 5126.72 496.58 5839.49 396.24 6524.34 340.80

12 2747.84 200.35 2471.89 461.74 3161.67 763.29

195

3 2478.95 226.78 1386.84 236.41 1802.72 118.93
6 5402.99 305.62 3500.32 155.69 4778.77 462.95
9 3206.22 543.17 2325.23 120.88 2997.64 425.16

12 4334.65 242.52 2170.40 577.74 2308.46 510.86

6

175

3 5627.47 160.01 6938.44 188.57 3980.86 888.42
6 6453.90 235.43 7437.03 284.16 6223.24 275.73
9 7102.53 498.93 8018.89 615.23 8221.52 462.43

12 5737.12 319.59 2632.46 771.76 5405.68 392.37

185

3 4434.88 548.19 5627.90 419.63 3668.79 246.61
6 6816.69 539.27 7653.40 609.12 7067.88 1212.46
9 8066.52 646.98 6800.63 529.77 8909.73 917.46

12 3655.24 463.60 4113.38 294.12 4017.14 779.64

6 195

3 5496.89 174.53 5754.53 437.84 4371.90 273.47
6 6401.64 103.64 6795.64 226.66 6284.33 220.08
9 4537.02 325.04 7876.06 679.39 6976.25 491.43

12 4932.49 671.14 6722.35 1547.92 3943.22 389.37

9

175

3 4427.01 341.41 5852.06 505.87 5380.34 551.48
6 6014.76 344.79 6769.27 422.12 6507.54 394.35
9 7236.19 401.98 7489.78 383.04 6914.86 693.77

12 6904.46 530.87 6130.86 321.84 7442.27 918.72

185

3 6195.36 539.26 5323.26 268.55 3499.18 181.72
6 7976.49 224.70 6444.19 198.53 5641.34 396.32
9 7747.40 413.56 8943.46 568.81 6227.26 854.15

12 5390.55 245.01 7047.13 197.01 5237.55 338.87

195

3 5243.40 582.77 5258.65 341.57 4496.68 423.12
6 5204.43 318.30 6231.14 328.71 5363.00 521.78
9 7536.75 849.17 6583.83 375.28 7850.35 674.96

12 5404.27 844.39 6971.23 994.58 4169.37 446.37

The average and standard deviation of the value modulus of elasticity (MOE) determined 
according to manufacturing conditions of test panels is given in Tab. 1.



747

Vol. 61 (5): 2016

One of the most important factors that effect on the properties of OSB is adhesive type. 
Phenolic adhesives are mainly used for providing strong and durable bonds in wood composites. 
Modulus of elasticity value is a very important property of wood composite panels in many 
applications; that is, especially in construction's sectors. OSB panels are commonly used in 
building sectors. In this study, it was found that the MOE values changed between 1802.72 and 
8943.46 N.mm-2. The highest value of MOE was 8943.46 N.mm-2 (9 % adhesive ratio, 185°C 
pressing temperature, 40 kg.cm-2 pressing pressure and 9 min. pressing time). It was shown that 
there was a critical increase after increasing the adhesive ratio and pressing time. But, it can 
state that when the increase of pressing pressure, the MOE values of panel's decrease that used  
12 % adhesive ratio and 3 min. pressing time. It can be said that when the used to 12 % adhesive 
ratio, pressing time inadequate for curing time especially using 3 min. pressing time. In a similar 
study, it was found out that by increasing the adhesive level from 3 to 6 %, modulus of elasticity 
value was increased by about 25.92 % in f lexure parallel with the length of the layers (Gökhan 
et al. 2011). Avramidis and Smith (1989) and Tang et al. (1984) both stated that mechanical 
properties of OSB increased as resin ratio increased from 4 to 5 then 6 %. In addition, water 
absorption, thickness swelling and linear expansion properties improved with increasing of resin 
ratio. The Multiple variance analysis was applied on data belong to EMO, which was determined 
experimentally was shown in Tab. 2.

Tab. 2: The results of variance analyze.

Source Type III  Sum of 
squares Df Mean square F- value Sig. Level 

(P<0.05)
Corrected Model 1807956337.69 107 16896788.20 58.44 0.00

Intercept 14792741358.04 1 14792741358.04 51164.10 0.00
Pressing pressure (PP) 23589628.37 2 11794814.19 40.80 0.00

Pressing time (PM) 777938176.56 2 388969088.28 1345.34 0.00
Pressing temperature (PT) 29927267.32 2 14963633.66 51.76 0.00

Adhesive ratio (AR) 423391180.52 3 141130393.51 488.13 0.00
PP * PM 15460742.49 4 3865185.62 13.37 0.00
PP * PT 3863133.22 4 965783.30 3.34 0.01
PM * PT 30833872.26 4 7708468.07 26.66 0.00

PP * PM * PT 75258673.87 8 9407334.23 32.54 0.00
PP * AR 35001250.24 6 5833541.71 20.18 0.00
PM* AR 95084012.68 6 15847335.45 54.81 0.00

PP *PM * AR 32218225.58 12 2684852.13 9.29 0.00
PT* AR 65972207.23 6 10995367.87 38.03 0.00

PP * PT* AR 71439974.58 12 5953331.21 20.59 0.00
PM* PT *AR 46052935.20 12 3837744.60 13.27 0.00

PP * PM* PT* AR 81925057.58 24 3413544.07 11.81 0.00
Error 124901323.38 432 289123.43
Total 16725599019.11 540

Many of parameters affect the final mechanical and physical properties of OSB. Nearly 
almost all factors interact with each other in one way or another. Consequently, each factor 
cannot be thought of as an individual entity that can be manipulated to control panel properties.  
The situation is rather complex and necessitates a more complete understanding of the entire 
process before any improvement can be made (Basturk 1999). According to the variance analysis, 
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the effects of the pressing pressure, pressing temperature, pressing time and adhesive ratio and 
the interaction of them on MOE values wasfound statistically significant. To comparisons of 
these means were done by employing a Duncan test to identify which groups were significantly 
different from other groups, and the results were given in Tab. 3.

Tab. 3: The results of Duncan test.

Manufacturing conditions
EMO (N.cm-2)

Mean HG

Pressing pressure 
(kg.mm-2)

50 4973.71 A
30 5242.62 B
40 5485.45 C

Pressing time 
(min.)

3 3541.79 A
6 5963.99 B
9 6195.99 C

Pressing temperature 
(°C)

195 4919.41 A
175 5296.63 B
185 5485.73 C

Adhesive ratio 
(%)

3 4231.47 A
12 4489.17 B
6 5949.00 C
9 6266.06 D

According to Duncan's test, the MOE values were determined changing between 3541.79 
and 6266.06 N.mm-2. Because of all manufacturing conditions of panels had affected on MOE, 
and it was seen that each of them fell within different homogenous groups. Determination of the 
relationships for prediction of MOE value of OSB panels produced different conditions by using 
multiple regressions, artificial neural network and ANFIS models, and also we compared the 
models. Firstly, basic statistics were shown Tab. 4. Pressing pressure values changed between 30 
and 50 with an average value of 40. While the average value of pressing time was 6 min., values 
varied from 3 to 9 min. The average values of pressing temperature and adhesive ratio were 
185ºC and 7.5 % respectively. And, the maximum and minimum values of pressing time and the 
adhesive ratio were 3-9 min., 3-12 %, respectively.

Tab. 4: Basic statistics of the results.

Pressing pressure 
(kg.cm-2)

Pressing time 
(min.)

Pressing 
temperature (°C)

Adhesive ratio
 (%)

Minimum 30 3 195 3
Maximum 50 9 175 12

Average 40 6 185 7.5
Std.Dev. 8.17 2.45 8.17 3.35

The multiple regression analysis was performed for this study. Statistically significant 
and strong correlations were found to be linear. MOE value was used as independent values, 
descriptive statistics (minimum, maximum, mean, mode, median, variance, etc.) were calculated 
using SPSS. Tab. 5 shows that the MOE as an independent value shows that almost normal 
distribution. It can be seen that skewnessand kurtosis values of -0.143 and -0.738 were very slow, 
and this result shows that the analyses will work well.
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Tab. 5: Descriptive statistics for MOE as an independent value.

N
Valid: 540
Missing: 0

Mean 5233.9245
Median 5442.53
Mode 2009.54

Std. deviation 1893.67
Variance 3586006.7
Kurtosis -0.738
Skewness -0.143
Maximum 9945.82
Minimum 486.41

Sum 2826319.22

Multiple regression analysis was performed to correlate the MOE to pressing conditions and 
adhesive ratio (Tab. 6).  

Tab.  6:  Model summaries of multiple regressions for prediction of MOE.

Independent variables Coefficient Std. error t-value Sig. level
Constant 

Pressing pressure
6334.34 
-13.44

1554.95
 8.12

4.07 
-1.65

0.000
 0.099

Pressing time 442.36 27.08 16.33 0.000
Pressing temperature -18.86 8.12 -2.32 0.021

Adhesive ratio 36.33 19.77 1.83 0.067

Multiple regression model to predict reflectance is given below.

Y=6334.34-(13.44 x pressing pressure) + (442.36 x pressing time) - (18.86 x pressing temperature) 
+ (36. 33 x adhesive ratio).

According to multiple regression analysis, the coefficient of correlation between the actual 
and predicted values is a good indicator to check the prediction performance of the model.  
Fig. 2 shows the relationships between experimental and predicted values for the multiple 
regression models for MOE value of OSB panels.
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Fig. 2: Relationships between experimental and predicted values for the multiple regression model for 
MOE.

In this study values account for (VAF) and root mean square error (RMSE) were calculated 
to control the performance of the prediction capacity of the predictive model developed for the 
study as employed by Yilmaz and Kaynar (2011):

 
 
Where y  and y´  are the calculated and predicted values, respectively. The calculated indices 

are given in Tab. 7. If the values account for (VAF) is 100, R2 is 1.00 and root mean square error 
(RMSE) is 0, the model will be shown excellent performance. 

In this equation, where Ai is the actual value and Pi is the predicted value. The obtained 
values of RMSE  and VAF given in Tab. 7 indicated high prediction performances.

Tab. 7: Performance indices (RMSE, VAF and R2) for models.

Model RMSE VAF (%) R2

Train Test Train Test Train Test
ANN-MLP 0.0575 0.0814 92.5922 84.7671 0.9623 0.9208

ANFIS 0.0490 0.0699 94.6207 88.7550 0.9727 0.9424
MR 0.1684 0.1769 36.4519 28.3422 0.6038 0.5329

RMSE; root mean square error. VAF; value account for.

In this research, performance of ANFIS (3*3*3 membership functions) was better than 
ANN-MLP (Levenberg-Marquardt backpropagation - trainlm; 20 hidden neurons) and multiple 
regressions. The best RMSE and VAF values were found by using ANFIS model in the both 
train and test samples. The RMSE and VAF of ANFIS model for train and test were 0.0490, 
0.0699, 94.6207 and 88.7550 % respectively. The best R2 was found 0.9727 at ANFIS in Fig. 3 
shows that relationship between actual and predicted MOE for ANN and ANFIS models.
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Fig. 3: Relationship between actual and predicted MOE for ANN and ANFIS models.

The deviations from the MOE value, the distances of the predicted MOE from the models 
were also calculated and graphics were drawn according to all and randomly selected 50 data  
(Fig. 4). These graphics shows that the deviation interval for all and first 100 data were (-1 to +1) 
of the predicted MOE from ANFIS is smaller than the deviation interval of multiple regression  
(-1 to +1) and ANN (-1 to +1).

Fig. 4: The variation of the MOE predicted by multiple regression, ANN and ANFIS models for all and 
first 100 data.

According to this results, the multiple regression model for prediction of MOE (R2=0.5850) 
was a good performance, but it was not as good as ANN-MLP and ANFIS especially. The ANN 
model has got a good performance (train R2=0.9623, test R2=0.9208) when compared with the 
multiple regression model. ANFIS model (train R2=0.9727, test R2=0.9424) has the highest 
performance for the prediction of MOE. 

CONCLUSIONS

In this study, multiple regression, artificial neural network and adaptive neuro-fuzzy 
inference system were used to prediction of modulus of elasticity of oriented strand board panels, 
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and these systems were compared to eachother’s. The research developed the ANFIS and 
compared to the artificial neural network (ANN) model and multiple regression models. ANFIS 
estimated the MOE with higher accuracy. ANFIS model has a higher performance than ANN 
and multiple regressions for predicting MOE values of oriented strand board. 

ANN and ANFIS have got higher accuracy and lower fault than traditional statistical 
models. The ANN and ANFIS can provide new approaches than simple statistics for highly 
precision mechanical and physical properties of wood-based practices, and this approach can 
recommend method in similar studies. The performance comparison showed that the ANFIS is 
a good tool for minimizing the uncertainties in the wood-based engineering projects.
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