Fixation of dye-type red and blue ink handwriting on aged paper

In this article, red and blue ink handwriting on aged paper was fixed by fixative to prevent handwriting from fading or diffusion during aqueous deacidification. Firstly, four fixatives were selected: polydimethyl ammonium chloride (PDDA), the quaternary ammonium salt of chitosan (HACC), cationic guar gum (CGG), and benzyl triethyl ammonium chloride (TEBAC) alcohol solution, according to their fixation effects on filter paper dyes, and derive the optimal composition ratio of the above four fixatives. Experimentally derived that PDDA has an excellent fixation effect on red ink handwriting, and HACC has an excellent fixation effect on blue ink handwriting. In addition, HACC also has a positive impact on the conservation of handwriting in real archives. The mechanical properties of aged paper were improved, and the paper fibers had no obvious change after the fixation and deacidification processes.

Quality evaluation of UHF RFID antennas and passive tags on paper substrates

The effect of antenna design modification, paper substrates and relative electrical permittivity of background materials on the reflection coefficient of UHF RFID antennas was studied. Simulation software was used to modify the design and calculate the reflection coefficient of the antennas. By modifying the coupling of the dipole with the induction loop of the antennas, a reduction of the simulated reflection coefficient was achieved compared to the commercial antenna. The positive effect of antenna modification was also confirmed by measuring the reflection coefficient of antennas printed on paper by thermal transfer printing, placed on extruded polystyrene and particle board. The reflection coefficient of the modified antennas was lower when placed on extruded polystyrene, whose relative electrical permittivity was lower than particle board. After installing the memory chip to the antennas printed on paper and paperboard, the identification, reading and recording range of passive UHF RFID tags were measured after they were placed on thicker paperboard, extruded polystyrene and particle board. The positive effect of antenna modification on improving the communication quality of passive UHF RFID tags placed on background materials with a relative electrical permittivity of 2.4 to 6.7 was confirmed.

Comparison of capillary flow porometry and mercury intrusion porosimetry in determination pore size distribution of papers

Capillary flow porometry and mercury intrusion porosimetry achieved a good agreement in determining the pore size distribution in papers for the top layers of corrugated board. Differences in the papers composition as well as structure can be easily detected by changes in the measured parameters, thus allowing a better understanding their behaviour at processing and use. Water absorption is mainly dependent on the diameter of the large pore and to a lesser extent from the diameter of medium pore, surface free energy of paper and the swelling ability of recycled and bleached pulp fibres.

Influence of gaseous plasma treatment on functional properties of coated papers

Three different types of paper with different coatings have been used in order to study the influence of gaseous plasma treatment on surface properties of paper. Radio frequency (RF) oxygen plasma was used for treatment of papers that contain different parts of organic and inorganic components in their coatings. Surface properties like surface morphology, roughness, surface energy, wettability, and chemistry were studied. The influence of plasma modification was also studied in terms of printability and paper gloss, which are one of the key parameters that dictate the use of such paper in desired applications. The results indicate that plasma modification of different types of coatings indeed influences paper printability as well as gloss function, which was shown to be highly connected with surface morphology, as micro- and nanopores were opened or formed due to selective plasma etching of organic part of the coating. Moreover, significant increase in surface energy was observed on all plasma treated papers, however this seemed not to influence much on the printing and gloss properties.

Paper substrates for inkjet printing of uhf rfid antennas

Conventional papers are not suitable for printed electronics because they have a rougher surface than the plastic film commonly used for electronics printing. The paper surfaces were modified by coating and calendering processes to reduce surface roughness and electrical resistance of inkjet-printed UHF RFID antennas. The composition of coatings, the main component which included aluminum oxide pigment, had an influence on the surface roughness, the surface pore content and the electrical resistance of the inkjet-printed UHF RFID antennas on coated papers. Papers coated with a mixture containing 25% polyvinyl alcohol binder in combination with the cationic polymer PDADMAC without glyoxal crosslinker had the lowest surface roughnesses and the lowest electrical resistances of the inkjet-printed antennas. As the coating basis weight increased, the electrical resistance of the antennas increased. Reduction of the electrical resistance of the antennas was achieved after calendering coated paper. The design of the antennas had a significant effect on their electrical resistance, which increased with the length of the antenna.

Comparison of thermal transfer and inkjet printing of UHF RFID tag antennas on paper substrates

UHF RFID printed antennas on conventional and experimentally coated papers by thermal transfer and inkjet technique were not conductive due to high surface roughness. Reducing the surface roughness of paper and hence the electrical resistance of the antennas printed by thermal transfer and inkjet printing was achieved by coating and subsequent calendering process. Papers for thermal transfer and inkjet printed of aluminum and silver antennas were prepared by coating with top functional coating, whose main component was pigment – precipitated calcium carbonate with addition of polyvinyl alcohol, cationic polymer PDADMAC and glyoxal. The desired quality of inkjet-printed silver antennas was achieved by using coated paper with a polyvinyl alcohol barrier layer and a top functional hydrophilic layer. Silver nanoparticles of inkjet ink require a sintering process to obtain a conductive printed trace. The microstructure and thickness of antennas printed by thermal transfer and inkjet technique were compared. Thermal transfer printing created a more homogeneous antenna with greater sharpness of drawing compared to inkjet printing.