Utilization of tinder fungus as filler in production of HDPe/wood composite

Selected physical and mechanical properties of high density polyethylene (HDPE) composites filled with various mixtures of wood flour and tinder fungus (Fomes fomentarius) were investigated. For this aim, different mixtures of tinder fungus flour and wood flour (0/40, 10/30, 20/20, and 30/10, and 40/0) (by weight) were compounded with HDPE with a coupling agent (maleic anhydride grafted polyethylene (MAPE) in a twin screw co-rotating extruder. The test specimens were produced by injection moulding machine. The thickness swelling and water absorption of the HDPE/wood composites significantly decreased with increasing content of the tinder fungus flour. The mechanical properties of the composites were negatively affected by increasing amount of tinder fungus flour but there were no significant differences up to 30 wt % tinder fungus content, except for the tensile strength. The optimum physical and mechanical properties for the filled HDPE composites were found to be a 10/30/60/3 formulation of wood flour, tinder fungus, HDPE, and MAPE, respectively.

Impact of pf and muf adhesives modified with TiO2 and SiO2 on the adhesion strength

The purpose of this study was to evaluate adhesion strength of phenol formaldehyde (PF) and melamine urea formaldehyde (MUF) adhesives modified with nano-technological products on the adhesion strength of different wood species. For this purpose, the effect of nano-TiO2 and nano-SiO2 on bonding performance and structural properties of PF and MUF were researced. And also, TiO2 and SiO2 chemicals were chosen as a rate of 2%, 4%, 6%, 8% within the adhesives. The bonding strength tests of the acquired Uludag fir and aspen boards were measured with a Universal Zwick Roell brand testing device in accordance with TS EN 205 standards. The obtained results showed that the highest bonding strength for Uludag fir wood was 8.27 N. mm-2 with PF adhesive mixed as 8% of SiO2 and the lowest was 5.91 N. mm-2 with MUF adhesive mixed as 2% TiO2, respectively. For aspen wood, the highest value was determined as 7.32 N. mm-2 with PF adhesive into which 8% of TiO2 had been added and the lowest was as 5.55 N. mm-2 with MUF adhesive into which % 6 TiO2 had been added. In conclusion it was determined that compared to the control samples the bonding strength of wood materials manufactured with the addition of nanoproduct into the PF adhesive enhanced the bonding strength by approximately 30% and 40% within MUF adhesive.

The tensile shear strength of outdoor type plywood produced from fir, alnus, pine and poplar wood

In this study, it is aimed to determine both the tensile-shear strengths of plywood that produced by using phenol formaldehyde resin from Uludağ fir (Abies nordmanniana subsp. bornmülleriana Mattf.), alder (Alnus glutinosa L.), scots pine (Pinus sylvestris L.) and Samsun poplar (77/51 Populus deltoides Bartr.) trees rotary cut veneers combinations of poplar-pine, poplarfir, poplar-alder and poplar wood along with the effect of wood types on adhesion quality of glue. According to standards TS 3969 EN 314-1, and TS EN 314-2 adhesion class 3, the test specimens were prepared and tested for the adhesion quality. The obtained data were analyzed statistically by using SPSS 22 statistical program. As a result, the tensile-shear strength values of poplar, pinepoplar, fir- poplar and alder-poplar plywood types were found to be as averages 1.34 N. mm-2, 1.66 N. mm-2, 2.18 N. mm-2 and 2.46 N. mm-2 respectively. Also, it was found that there was no significant difference between the alder poplar and fir-poplar plywood types about tensile-shear strength. Since these all plywood combinations are satisfied the required 1 N. mm-2 strength value according to TS EN 314-2, all plywood types in this study are of suitable quality for outdoor uses.