CHARACTERIZATION OF EXTRACTIVE COMPOSITION IN THE WOOD AND BARK OF CAJUPUTI (MELALEUCA CAJUPUTI SUBSP. CAJUPUTI POWELL.) GROWN IN GUNUNGKIDUL, INDONESIA

The aim of this study was to analyze the extractive composition of the wood and bark of cajuput (M. cajuputi subsp. cajuputi) to consider the end use material according to the characteristics of the its extractives. Results showed that the extractives properties of M. cajuputi, i.e. the contents of n-hexane, methanol, hot water extractives and total phenolic content (TPC), flavonoid content (TFC) and total polysaccharides (TSP) were 0.84 to 1.05%, 1.00 to 1.03% and 1.43 to 1.46%, and 19.2 to 38.7 and 23.2 to 27.3 mg GAE/g dried extract, 11.8 to 16.0 and 7.55 to 14.0 mg QE/g dried extract and 79.3 to 102.8 and 148.8 to 165.9 mg Glu/g dried extract, respectively. Bark had higher extractive levels than wood. In addition, TPC and TSP in the bark were greater than in the wood parts, whereas the reverse trend was found in TFC. The relatively high contents of TPC and TFC in the wood and bark suggest that their potential antioxidant properties. Based on the GC-MS analysis, the high content of sterols-steroids (31.4%) and triterpenoids (21.9%) in the bark part will have potential in the field of pharmacology

The contents of phenolics and cell wall component of Eucalyptus pellita F. Muell stemwood and bark

Eucalyptus pellita is the fast-growing species which is being developed for a raw material of pulp and paper in Indonesia. The aim of this research was to evaluate the total phenolics (TPC) and flavanols contents (TFC) in the stemwood and bark parts from four individual trees. Another purpose was to determine its cell wall contents. Wood and bark materials in two vertical positions (bottom and top) were successively extracted using dichloromethane, ethanol and hot water as the solvents. Axial factor affected significantly in the values of hot water extract, TPC, and TFC but no significantly affected the cell wall component contents. The ethanol extract levels in the heartwood part was the significantly highest. It is noticed that the heartwood part had high levels of the TPC and TFC and low level in lignin content. From this experiment, the comparatively high levels of TPC and TFC in the heartwood indicate the potential antioxidative properties that should be explored in the future. Further, the low content of Klason lignin in the heartwood part would be an advantage for pulp production.