EFFECT OF ALKALINE TREATMENT ON MORPHOLOGY AND BIODEGRADATION OF BAGASSE AND MAIZE CELLULOSE

This study investigates the biodegradation behaviour of cellulose extracted from sugarcane bagasse (SCB) and maize using chemical treatments involving sodium hydroxide (NaOH), sodium chlorite, and buffer solutions (NaOH and glacial acetic acid). The extraction process yielded cellulose at 38.00% from SCB and 45.14% from maize, based on the weight of the raw material. The resulting celluloses were characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirming their structural and chemical integrity. Biodegradability was evaluated through composting tests, revealing weight losses of 9.08% for SCB cellulose and 29.47% for maize cellulose. The higher degradation rate of maize-derived cellulose suggests enhanced biodegradability

Effect of silica on alkaline bagasse cellulose and softwood cellulose

This study investigates the effect of silica on sugarcane bagasse (SCB) and softwood (SW) cellulose. Cellulose was extracted from raw SCB and SW chips using a three-step process, namely thermal pre-treatment, alkaline treatment and bleaching treatment. Alkali treated cellulose was then subjected to silica surface modification using the solvent exchange method. The effect of silica modification on SCB and SW cellulos was investigated using X-ray diffractions analysis (XRD), Fourier transform infrared (FTIR) spectroscopy and optical microscope (OPM) techniques. Both the FTIR and XRD results confirm successful extraction of cellulose from both raw fibers and addition of silane functional groups in the cellulose surface. XRD patterns of all samples revealed typical spectra for natural fibers corresponding to crystalline peaks of cellulose and undissolved amorphous hemicellulose respectively. SCB and SW showed similar increasing patterns of crystallinity with nanosilica surface modification. The surface morphology results showed that both SCB and SW cellulose modified with silica were swollen and displayed small particles agglomerating on the surface of the fibers. The solvent exchange method proved to be a successful method for modifying SCB and SW cellulose with nanosilica. It also proved to be cost-efficient and time-efficient.

Influence of kraft lignin on the properties of rubber composites

The influence of lignin content on reclaimed rubber (RR)/natural rubber (NR) blend composite properties has successfully been studied. Scanning electron microscopy (SEM) were used to understand morphology. Fourier-transform infrared spectroscopy (FTIR) for the possible chemical interaction, whereas thermogravimetric analysis (TGA) and tensile tester were used to predict strength and elongation for possible practical applications. The results indicated that the presence of lignin forms cavities which seemed to arise from complex interactions of the blend with the lignin. Those cavities dominated tensile fractured surface and the increase in lignin indicated inconsistencies of interfacial interactions. Lignin RR/NR blend composites revealed a drop in tensile strength and shift in glass transition temperature, except for the highest lignin containing blend composite. More active interactive constituent of the blend appeared to be NR. The interaction has not favored the thermal stability and crosslinking density.