Analytical study on axial and eccentric compressive behavior of poplar column strengthened by BFRP

In this work, the compression behaviour of the Xinjiang poplar column was reinforced by basalt fibre reinforced polymer (BFRP) strips with different reinforced configurations, and the numerical simulations were performed on the axial and eccentric compressions of poplar columns unreinforced and reinforced with BFRP to assess the effect of the bearing capacity and deformation of the columns. The results show that the use of BFRP to reinforce the Xinjiang poplar column effectively improves its axial compressive bearing capacity (axial compression) and bending bearing capacity (eccentric compression), and at the same time, the bearing capacity and stiffness of the columns strengthened by BFRP increased with the bonding area of BFRP.

Study of the discoloration behaviour of teak wood (Tectona grandis Linn. fil.) caused by simulated sunlight

To investigate the discoloration behaviour of teak (Tectona grandis Linn. fil.) during irradiation, teak veneer specimens were exposed to xenon lamp light simulating sunlight for 80 h and subsequently analysed with a colorimeter. The colour changes were explained by recording Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS) spectra at different exposure times. Forty hours of simulated irradiation marked a key point in the colorimetric analysis. During irradiation of 40 h, the increase in the CIELAB parameters ∆a* and ∆b* originated from the generation of carbonyl derivatives that were determined by FTIR analysis. Besides that, by combining GC-MS and microscopic analyses, the decrease in ∆L* in the first 20 h resulted from extractives migrating from the interior to the surface, and that the subsequent increase in ∆L* mainly arose from volatilization of the extractives. Additionally, the decrease in ∆b* after another 40 h of irradiation was mainly due to decreasing volatile extractive contents. Our conclusion reveals the causes of photo-induced discoloration in teak.