THE EFFECT OF WEATHERING ON SURFACE CHARACTERISTICS OF CHEMICALLY MODIFIED SCOTS PINE (PINUS SYLVESTRIS) WOOD

Scots pine (Pinus sylvestris L.) sapwood of 200 × 20 × 80 mm3 (L×R×T) was treated with both cell wall filling and lumen filling chemical agents (low-molecular phenol-formaldehyde, bio-oil, N-methylol/N-methyl compounds, sorbitol-citric acid, polysiloxane), which were fixed inside the wooden structure during heat-curing processes. The present study investigated the impact of the appointed chemical modifications on the surface characteristics of wood, which was addressed by measurements of the surface roughness (Ra), surface free energy (SFE), contact angles, wettability and its bonding quality. Independent of the chemical agents applied, Ra decreased as result of the chemical treatments, while SFE experienced a reduction. The Ra and SFE of both untreated and modified pine specimens increased after weathering processes. The weathering was appointed to cause a decrease in the equilibrium contact angle (θe) and an increase in the constant contact angle change rate (K-value). Increasing K-values after weathering for both untreated and modified pine specimens indicated their better wettability. Increasing wettability after weathering led to better adherence of acrylic paints on the surface of the Scots pine wood. In summary, the chemical modifications decreased the Ra and SFE of the pine sapwood, which may as a consequence affect the wettability and bonding quality of wood during outdoor exposure

Effect of smoothing in calender and hot stamping machine on the properties of coated paperboards for printed electronics

The methods of coated paperboards smoothing with a hot stamping machine using a smooth metal die and a conventional calender were compared. The printing roughness required for printing electrical and electronic components was achieved by both smoothing methods. The printing roughness of the coated paperboards decreased after hot stamping by 18 to 42% and after calendering by 22 to 41% depending on the grade of coated paperboard. The stiffness of coated paperboards decreased after hot stamping by only 4 to 21%, while by up to 38 to 51% after calendering. The ratio of specific stiffness and printing roughness of coated paperboards after hot stamping ranged from 2.5 to 8.1 mN. μm-2 and after calendering from 2.0 to 6.7 mN. μm-2. The stiffness of the coated paperboards decreased less after hot stamping, and that only in the printed electronics area, while after calendering the stiffness decreased significantly more in the whole profile. It can be assumed that packaging made from coated paperboards smoothed by hot stamping will have a lower weight and thus lower costs than packaging from calendered coated paperboards.