EFFECT OF TEMPERATURE AND RELATIVE HUMIDITY VARIATIONS ON BENDING STRENGTH PROPERTIES OF HYBRID EUCALYPTUS WOOD IN GHANA

The study examines how temperature and relative humidity affect the bending strength properties of hybrid eucalyptus wood from Amantia and Winneba in Ghana. Eucalyptus wood from six trees were tested based on BS 373:1957 under different temperatures and relative humidity levels. The study measured the modulus of elasticity (MOE), modulus of rupture (MOR), and moisture content (MC) of the wood samples. The results showed that MOE and MOR varied significantly across the different conditioning parameters N, T, K and G. MC also influenced the mechanical strength properties of the wood, following the wood-water relation theories. The study concluded that climate and geographical location are important factors to consider when evaluating the mechanical properties of hybrid eucalyptus. This study holds practical implications for optimizing the utilization of eucalyptus wood particularly in the construction and related industries in the three different climatic zones of Ghana

Mechanical Properties of PF and MUF Bonded Juvenile Hybrid Eucalyptus Plywoods Produced in Ghana

To obtain the mechanical properties of plywood produced from six yearold hybrid Eucalyptus in Ghana was the objective of this research. The samples for the experiment were prepared and tested according to GS EN 326-1, GS EN 310, GS EN 314-1, and GS EN 314 -2. The data obtained were analysed using the factorial ANOVA analysis. The mean results obtained for the various treatments were MOE (6520 – 7638 N/mm2), MOR (53.29 – 60.56 N/mm2, shear strength (2.47 – 5.51 N/mm2), failure (72 -90%) and density (725 – 748 kg/m3). The orientation of the surface veneer caused variations among treatments whiles the adhesives PF and MUF largely did not cause any variations among treatments. This study has proven that it is possible to produce sufficiently strong and resistant plywood from the juvenile wood of eucalyptus.