Optimization of the manufacturing of Metasequoia-based three-layer structure parquet flooring by a response surface methodology

On the basis of a single-factor experiment, a mathematical model was established by the response surface analysis method based on the Box-Behnken experimental design principle. The effects of three factors, including hot-pressing temperature, hot-pressing time, and hot-pressing pressure, and their interactions on the modulus of rupture (MOR) of Metasequoia-based three-layered structure parquet flooring were studied. The results show that the quadratic polynomial model in the regression equation is significant, and the correlation between the value predicted by the model and the experimental value is 91.17%. The optimized best hot-pressing process parameters are determined to be as follows: hot-pressing temperature of 96.03°C, hot-pressing time of 6.70 min, and hot-pressing pressure of 8 kg·cm-2. Under these conditions, the best MOR are obtained, reaching a value of 102.05 MPa. The theoretically predicted value is in good agreement with the experimental results.

The physiological and biochemical mechanisms of Cinnamomum camphora xylem extracts inhibit wood-decay fungi

The present study investigated the physiological and biochemical mechanism of extracts derived from Cinnamomum camphora (L.) Presl. The methanol and chloroform extracts of C. camphora xylem exhibited inhibitory activity against oxygen consumption in Coriolus versicolor and Gloeophyllum trabeum. The inhibitory effect of cellulose secreted by G. trabeum was concentration-dependent. The application of the ethyl acetate extracts of C. camphora xylem on the G. trabeum hyphae resulted in an improvement in electric conductivity, which followed a concentration-dependent fashion. Protein permeability increased with higher concentrations of the ethyl acetate extracts of C. camphora xylem. This research provided theoretical basis for understanding of the physiological and biochemical mechanisms of C. camphora extracts inhibit wood-decay fungi and the development of natural extracts as wood preservatives.

Emission of volatile camphor compounds from Cinnamomum camphora wood

Essential oil volatilization of Cinnamomum camphora (L.) Presl can positively affect indoor air quality through insect dispersal, antibacterial effects, and inhibiting decay, and thus is an important economic species in China. Camphor is the most abundant aromatic compound in C. camphora, although how time and temperature affect the release of the camphor is unknown. To address this question Cinnamomum camphora (C. camphora) wood was investigated using headspace gas chromatography (HS-GC). Camphor decreased with increasing detection times over temperatures of different temperature. During the detection, the release rate of camphor decreased rapidly with increased heating time in the first 2.5 h, and leveled-off after 2.5 h. The release of camphor at different temperatures was linear between 0 ~ 1.4 h.
By fitting this linear model with reaction temperature camphor release could be expressed as Y = -75.369 + 2.3786.T + (41.125 – 1.1972.T). Evaluating the release of camphor from C. camphora wood and creating a model may be useful for promoting its application in the medical and chemical industries.