Thermal characteristics of oriental beech wood treated with some leaching resistant borates

It was aimed to investigate thermogravimetric analysis (TGA), differential-thermogravimetric (DTG), and differential-thermal analysis (DTA) of Oriental beech (Fagus orientalis L.) wood treated with some leaching resistant borates such as sodium tetraphenylborate (STPB) and phenylboronic acid (PBA). In this study; 0.25, 1.00, and 4.70 % aqueous solutions of borates were prepared. Results of the study indicated that pyrolysis occurred in three stages for STPB and PBA treated Oriental beech wood. Generally, while concentrations of the STPB and PBA increased, Ti and Tmax values of STPB and PBA treated wood specimens decreased. Residual char contents of STPB and PBA treated wood specimens for all concentrations were higher than untreated control specimen.

Effect of SiO2 and Al2O3 nanoparticles treatment on thermal behavior of oriental beech wood

In this study, investigation of the thermal properties of Oriental beech (Fagus orientalis L.) wood samples treated with 1.50 and 3.00% aqueous solutions of SiO2 and Al2O3 nanoparticles were performed by using thermogravimetric analysis (TGA), differential-thermogravimetric (DTG), and differential-thermal analysis (DTA) under argon atmosphere. Thermal degradation of SiO2 and Al2O3 nanoparticles treated Oriental beech wood could be separated in three district regions. These regions could be called as drying, pyrolysis, and charring. Our results showed that Al2O3 and SiO2 nanoparticle treatment increased residual char yield of Oriental beech wood samples. The highest residual char yield was obtained for wood samples treated with 3.00% Al2O3 nanoparticles. Moreover, higher concentration levels resulted in lower Tmax values, higher Ti values and higher char yield of Oriental beech wood.