Optimization of L-shaped corner dowel joint in pine using finite element analysis with Taguchi method

The strength of the furniture corner-joints in pine remains unknown, and the lack of information restricts its use in furniture industry. Therefore, the aim of this study is to optimize the strength of L-shaped corner dowel joint in pine under compression loads using finite element analysis (FEA) with Taguchi method. By adopting a L9-34 Taguchi orthodoxy array (OA), four experiment factors (i.e., structure style, tenon length, tenon diameter, and tenon gap), each at three levels, were carried out to determine the optimal combination of factors and levels for the von mises stress using ANSYS software. The results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed that the optimal L-shaped corner dowel joint in pine is 45° Bevel Butt in structure style, 24 in tenon length, 6 in tenon diameter and 20 mm in tenon gap.