Fungicidal activity and bamboo preservation of Pinus elliottii needles extracts

China is rich in bamboo resources. But there has been a huge gap in timber supply. The most effective solution to eliminate the existing timber supply gap is to carry out the industrialization of bamboo so that the bamboo resources can be fully used. Bamboo is full of nutriments, but it is perishable and difficult to store. Usually bamboo is vulnerable to mildew and insects. Therefore, it is of great significance to research bamboo mold corrosion protection technology for the high-efficient development of bamboo resources. The antifungal activity of different solvent extracting tests were conducted from Pinus elliottii needles (hexane extract(W1), ethyl acetate extract (W2), anhydrous ethanol extract (W3) and water extract (W4)) in white-rot fungus Coriolus versicolor and brown-rot fungi Gloeophyllum trabeum, Polyporus vaporaria Fr. The tests concequence verified that Pinus elliottii needles extracts W1 and W2 have better inhibitory effect on white-rot fungus Coriolus versicolor and brown-rot fungi Gloeophyllum trabeum, Polyporus vaporaria Fr, which indicated that W1 and W2 had possibility to develop as natural fungicide. Further analysis of indoor anti-corrosion of bamboo indicated that W1 and W2 played the best role in bamboo antiseptic effect. The latest research manifested that W1 and W2 have potential to be developed as natural bamboo preservative.

Characteristics of nontoxic bamboo bioboard by melamine and cellulose adhesive

In this research, the influence of various factors on the performance of the melamine bamboo cellulose gum is investigated by orthogonal test method, with the pressing temperature, pressing time, the added amount of cellulose gum, melamine dosage as factors. And analyze the samples by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), DTG, etc. The amount of melamine is the main factor affecting the quality of bamboo composite material and its physical and mechanical properties, it has a significant impact on MOR board, internal bond strength, elastic modulus and other properties; cellulose gum is a secondary factor affecting performance. The results showed that cellulose gum ratio of 5 %, ratio of melamine of 2.5 % and the hot press time of 9 min provided the optimum conditions for hot press.