Cutting forces in quasi-orthogonal CNC milling

The paper is focused on the analysis of cutting forces in milling of MDF on the CNC machine (SCM Tech 99 L, SCM Group, Italy). The measurement of the forces was realized by a three-axis piezoelectric dynamometer Kistler 9257B (Kistler Holding AG, Switzerland). The forces were examined and analysed during quasi-orthogonal milling with a single-edged blade. The resulting forces were compared to each other depending on the conventional and climb milling of the edge of the MDF at changing feed speeds from 1.5 to 4.5 m∙min-1 with steps of 0.75 m∙min-1. The experimental values of cutting forces were also used for the first assessment of the fracture toughness and shear yield strength, main parameters of computational model based on Ernst-Merchant theory and on fracture mechanics. These values were input data for the calculation of the specific cutting resistance for CNC machining. The experimental data confirmed that the cutting force increases and the specific cutting resistance decreases with the increasing chip thickness.