Impact of silvicultural measures on the quality of scots pine wood Part II. Effect of site

This study deals with the variability of wood density, compression strength and the impact bending strength within the trunk of Scots pine (Pinus sylvestris L.). The impact of the site on the examined properties was also evaluated. The tree samplers come from four different sites that are representative for Scots pine growth in the Czech Republic. From the samplers the sections representing a basal part of the trunk and a middle part of the tree were cut. The most significant influence of the site was confirmed for wood density; on the other hand, the influence of the site is ambiguous in terms of the examined strength characteristics. A decrease in the wood properties with increasing trunk height was proven for all tested properties. The highest impact of the position was observed for wood density, while the results of vertical variability in mechanical properties are not always significant (compression strength: basal 47.1 MPa and middle 45.8 MPa). A close correlation between mechanical properties and wood density was also proven.

Impact of silvicultural measures on the quality of Scots pine wood. Part I. effect of regeneration method

This study deals with the influence of the silvicultural measures on selected mechanical properties of Scots pine (Pinus sylvestris L.) wood in the Czech Republic. Sample trees were selected at two different localities that are characteristic of Scots pine growth, and they represent two different Scots pine regeneration methods, namely the clear-cutting and shelterwood regeneration method. We tested compressive strength and impact bending strength. The density of the wood was also evaluated as a factor influencing strength characteristics. The shelterwood regeneration method shows higher values in most of the investigated characteristics (49.3 MPa for the shelterwood method and 44.6 MPa for the clear-cutting method in the case of compressive strength); however, these differences are not significant for the processing industry. Another positive effect of the shelterwood regeneration method is the even distribution of the properties within the trunk in radial direction in contrast to clear-cutting method.