Impact of silicon-based chemicals on selected physical and mechanical properties of wood

This study deals with the impact of silicon-based chemicals on selected physical and mechanical properties of wood. Wood of European beech and Scots pine was the testing material used for impregnation using water glass and commercial product Lukofob EVO 50. The impact of the treatment on dimensional stability, bending strength and modulus of elasticity was tested. Wood density was also evaluated. Although the modification using silicon-based staffs resulted in a statistically significant decrease in swelling for both of the tested species, the positive effect of the treatment was accompanied by a decrease in the strength and stiffness of wood. Water glass had a stronger effect on the tested properties from the chemicals we used in our research.

Effect of the passive chemical modification of wood with silicon dioxide (silica) on its properties and inhibition of moulds

This work investigates how wood modification with silicon dioxide affects its selected physical and mechanical properties and resistance to moulds. Silicon mineralization can improve some of the technical properties of wood and extend the service-life of wooden structures. Silicon, which is contained in inorganic and organic-inorganic substances that are used for artificial wood mineralization or is the main component at natural wood mineralization, was used in the form of colloidal silicon dioxide and its various concentrations for pressure impregnation of beech (Fagus sylvatica) and Silver fir (Abies alba) wood samples. Following, physical, mechanical and biological properties of such modified woodswere tested together with waterlogged fir wood stored in water over a long period. Silicon-dioxide did not significantly improve properties of beech and fir woods, probably due to the hypothesis, that none covalent bonds between the silicon and the OH- groups of cellulose, hemicelluloses or lignin could be created in the cell-walls of the silicon-modified woods.