The physiological and biochemical mechanisms of Cinnamomum camphora xylem extracts inhibit wood-decay fungi

The present study investigated the physiological and biochemical mechanism of extracts derived from Cinnamomum camphora (L.) Presl. The methanol and chloroform extracts of C. camphora xylem exhibited inhibitory activity against oxygen consumption in Coriolus versicolor and Gloeophyllum trabeum. The inhibitory effect of cellulose secreted by G. trabeum was concentration-dependent. The application of the ethyl acetate extracts of C. camphora xylem on the G. trabeum hyphae resulted in an improvement in electric conductivity, which followed a concentration-dependent fashion. Protein permeability increased with higher concentrations of the ethyl acetate extracts of C. camphora xylem. This research provided theoretical basis for understanding of the physiological and biochemical mechanisms of C. camphora extracts inhibit wood-decay fungi and the development of natural extracts as wood preservatives.

Emission of volatile camphor compounds from Cinnamomum camphora wood

Essential oil volatilization of Cinnamomum camphora (L.) Presl can positively affect indoor air quality through insect dispersal, antibacterial effects, and inhibiting decay, and thus is an important economic species in China. Camphor is the most abundant aromatic compound in C. camphora, although how time and temperature affect the release of the camphor is unknown. To address this question Cinnamomum camphora (C. camphora) wood was investigated using headspace gas chromatography (HS-GC). Camphor decreased with increasing detection times over temperatures of different temperature. During the detection, the release rate of camphor decreased rapidly with increased heating time in the first 2.5 h, and leveled-off after 2.5 h. The release of camphor at different temperatures was linear between 0 ~ 1.4 h.
By fitting this linear model with reaction temperature camphor release could be expressed as Y = -75.369 + 2.3786.T + (41.125 – 1.1972.T). Evaluating the release of camphor from C. camphora wood and creating a model may be useful for promoting its application in the medical and chemical industries.