Effect of UV radiation on change in color of steamed beech wood

The wood of the beech (Fagus Sylvatica L.) was steamed with a saturated steam-air mixture at a temperature of t = 95°C, or saturated steam at t = 115°C and t = 135°C to obtain a pale pink, red-brown and rich brown-red color. Subsequently, samples of unsteamed and steamed beech wood were irradiated with a UV lamp in a Xenotest Q-SUN Xe-3-HS after drying in order to test the color stability of steamed beech wood. The color change of the wood surface was evaluated by means of measured values on the coordinates of the color space CIE L*a*b*. The results show that the surface of unsteamed beech wood as well as steamed beech wood with a steam-air mixture at a temperature of t = 95°C and saturated steam with a temperature of t = 125°C darkened and turned brown to a brown-yellow color due to UV radiation. The deep brown-red color of the surface of beech wood steamed with saturated steam with a temperature of t = 135°C brightened to a brown-yellow color similar to the color of unsteamed beech wood. The analysis of the changes in the color space CIE L* a* b* shows that the greater the darkening and browning of the beech wood by steaming, the smaller the changes in the values of ΔL*, Δa* Δb* of the steamed beech wood caused by UV radiation. The positive effect of steaming on UV resistance is evidenced by the decrease in the overall color difference ΔE*. While the value of the total color difference of unsteamed beech wood caused by UV radiation is ΔE* = 15.3, for beech wood steamed with a saturated steam-air mixture at t = 95°C it decreased to ΔE* = 9.5, which is a decrease of 37.9%, for steamed beech wood steamed with saturated steam with temperature t= 115°C is ΔE* = 6.2 which is a decrease of 59.4% and for steamed beech wood steamed with saturated steam with temperature t = 135°C is ΔE* = 4.5 which is a decrease of 70.5%.

Colorimetric and thermochromic properties of reversible thermochromic wood

To endow wood materials with a thermochromic function, an organic thermochromic agent consisting of thermochromic dye, bisphenol A (BPA) and long-chain alcohols (1-tetradecanol (TD), or 1-hexadecanol (HD)) was used as a dye to prepare reversible thermochromic wood (RTCW). The colorimetric properties, including total color difference (ΔE*ab), lightness index (L*), red-green index (a*), and yellow-blue index (b*), were investigated at different temperatures. The color change temperature range and color hysteresis of RTCW were also analyzed. The color difference unit of National Bureau of Standards (NBS) was used to determine the color change temperature range and the achromic (chromic) temperature. In the decolorization process, with the temperature increasing, the values of ΔE*ab, L* and b* of the RTCW samples increased, and the values of a* decreased, but the values of ΔE*ab, L*, a*, and b* were just opposite in the colorization process. Meanwhile, the color of the RTCW with TD or HD could repeatedly change between red and light brown (wood colore) within a color temperature range of 25-35°C or 37-49°C respectively, presenting a “color hysteresis” phenomenon over a heating (decolorization) and cooling (colorization) cycle. The achromic and chromic temperature of the RTCW samples with TD was 31°C and 25°C respectively while RTCW samples with HD was 43°C and 37°C.