Impact of heat treatment on the surface color and glossiness of young eucalyptus wood

The study analyzed the impact of heat treatment conditions (temperature and duration) on the surface color and glossiness of young eucalyptus wood. The young eucalyptus wood samples were treated at different treatment temperatures (165°C, 185°C, 205°C) and duration (2 h, 3 h, 4 h). The color of the young eucalyptus wood was determined using CIE L*a*b* system and the gloss was measured with glossmeter at 20°, 60°, and 85° incident angle before and after the heat treatment. The total color difference (E* ), lightness (L*), red-green index (a*), and yellow-blue index (b*), were investigated at different treatment conditions. The values of L* and b* decrease continuously with the increasing temperature and duration. The results of analysis of variance (two-way ANOVA) indicate that the heat treatment temperature has a significant effect on the colorimetric properties of the heat-treated young eucalyptus wood. The gloss decreased after the heat treatment for both perpendicular and parallel directions. ANOVA analysis showed that the treatment temperature duration have a significant effect on the parallel glossiness of 85°(p<0.05). These are probably due to differences in surface roughness between untreated and heat-treated wood. To achieve the desired color like teak wood, the preferred temperature is no more than 185°C.

Effect of heat treatment on the surface color of rubber wood (Hevea brasiliensis)

In this study the effect heat treatment process parameters (temperature, duration and heating rate) on the surface color of rubber wood was evaluated. The color of the rubber wood was determined using CIE L*a*b* system before and after the heat treatment. The colorimetric properties, including total color difference (ΔE*), lightness index (L*), red-green index (a*), and yellow-blue index (b*), were investigated at different treatment conditions. The results of analysis of variance (ANOVA) indicate that the heat treatment temperature has a significant effect on the colorimetric properties of the heat-treated rubber wood, duration and heating rate has no effect. Within the experimental range, as the heat treatment temperature and duration increasing, the color of the rubber wood gradually deepens. In order to achieve a surface color like the teak wood, the optimum process conditions are heat treatment temperature 190°C, duration 4 h, heating rate 10°C.h-1.

Effect of pressurized hot water treatment on the mechanical properties, surface color, chemical composition and crystallinity of pine wood

The effect of a pressurized hot water treatment (PHWT) on the mechanical properties, chemical composition, surface color, and cellulose crystalline structure of Pine wood were examined in this study. The effects of PHWT of pine wood at 140, 160, 180, and 200°C for 1, 3 and 5 h were investigated in terms of changes in mechanical properties, chemical composition, surface color and cellulose crystallinity of pine wood by means of a GB/T standard, NREL LAP, Color Difference Meter, and X-ray diffraction (XRD). Both the temperature and treatment time showed significant effects. The results showed that the bending strength and elastic modulus decreased with an increasing temperature and duration. Changes in the chemical components and surface color occurred because of the degradation of the cellulose, hemicelluloses and lignin in the wood during the PHWT. Additionally, the relative degree of relative crystallinity of the samples increased. These findings demonstrated the potential of PHWT for the wood modification.