Effect of UV radiation on change in color of steamed beech wood

The wood of the beech (Fagus Sylvatica L.) was steamed with a saturated steam-air mixture at a temperature of t = 95°C, or saturated steam at t = 115°C and t = 135°C to obtain a pale pink, red-brown and rich brown-red color. Subsequently, samples of unsteamed and steamed beech wood were irradiated with a UV lamp in a Xenotest Q-SUN Xe-3-HS after drying in order to test the color stability of steamed beech wood. The color change of the wood surface was evaluated by means of measured values on the coordinates of the color space CIE L*a*b*. The results show that the surface of unsteamed beech wood as well as steamed beech wood with a steam-air mixture at a temperature of t = 95°C and saturated steam with a temperature of t = 125°C darkened and turned brown to a brown-yellow color due to UV radiation. The deep brown-red color of the surface of beech wood steamed with saturated steam with a temperature of t = 135°C brightened to a brown-yellow color similar to the color of unsteamed beech wood. The analysis of the changes in the color space CIE L* a* b* shows that the greater the darkening and browning of the beech wood by steaming, the smaller the changes in the values of ΔL*, Δa* Δb* of the steamed beech wood caused by UV radiation. The positive effect of steaming on UV resistance is evidenced by the decrease in the overall color difference ΔE*. While the value of the total color difference of unsteamed beech wood caused by UV radiation is ΔE* = 15.3, for beech wood steamed with a saturated steam-air mixture at t = 95°C it decreased to ΔE* = 9.5, which is a decrease of 37.9%, for steamed beech wood steamed with saturated steam with temperature t= 115°C is ΔE* = 6.2 which is a decrease of 59.4% and for steamed beech wood steamed with saturated steam with temperature t = 135°C is ΔE* = 4.5 which is a decrease of 70.5%.

Degradation of wood fire retardant by UV assisted biomimetic oxidation over Cu([H4]salen) using BDE209 as a model

This work aimed to study mineralization and detoxification of BDE209 by biomimetic oxidation. The removal rate (RR) of BDE209 of process was comparatively investigated in the presence of UV radiation using immobilized Cu([H4]salen) complexes (Cu([H4]salen)/IM and Cu([H4]salen)/SB) as biomimetic catalysts. Their neat and [H2]salen complexes were compared towards BDE209 degradation. UV effects were evaluated according to RR. Ecotoxicities were measured for treated BDE209 solutions and explained in terms of total organic carbon (TOC). The results showed that UV-Cu([H4]salen)/SB process evidently gave high RR and low ecotoxicity in BDE209 degradation, indicating a significant superiority of biomimetic catalysis, complex reduction and immobilization and UV radiation.