Properties of Particleboards with Partial Replacement of MUF Resin by Sodium and Magnesium Lignosulfonates
The objective of this study was to evaluate the feasibility of partially replacing melamine-urea-formaldehyde (MUF) resin with lignosulfonates and to assess the effects on the physical and mechanical properties of the boards. Particleboards were produced using MUF resin, with partial substitution by either sodium lignosulfonate (NaLS) or magnesium lignosulfonate (MgLS) at levels of 10%, 20%, and 30% by weight. Control boards were also manufactured using 100% MUF resin for comparison. The results demonstrated that both, the type and proportion of lignosulfonate, significantly influenced the physical and mechanical characteristics of the boards. Specifically, the lignosulfonate content had a notable negative effect on the internal bond (IB) strength, bending strength (MOR), and thickness swelling (TS). In contrast, the type of lignosulfonate significantly affected only the IB strength. Boards containing 10% NaLS exhibited comparable properties to those of the control group. Additionally, boards incorporating NaLS generally outperformed those containing MgLS, although the differences were not statistically significant. Particleboards incorporating with 10% or 20% NaLS or MgLS, although exhibiting lower IB strength, MOR and modulus of elasticity (MOE) than the control boards, met the performance criteria for type P2 boards, intended for interior applications (including furniture) in dry conditions, as specified by the EN 312.
